POJ2019 二维ST表

本文介绍了一种高效的算法,通过将二维矩阵划分为行块,利用最小堆(ST表)快速计算每个块内的最值,从而解决区间最值问题。作者详细讲解了如何初始化ST表并实现范围最小值查询(RMQ),适用于求解大规模数据的最值问题。
摘要由CSDN通过智能技术生成

题目要我们求一个块内的最值,可以把块分成多行,每行求一次RMQ即可,因此也要对每一行建一个ST表。

#include <algorithm>
#include <cmath>
#include <cstdio>
#define fre(f) freopen(f ".in", "r", stdin), freopen(f ".out", "w", stdout)
#define inf 0x3f3f3f3f
const int N = 255;
using namespace std;

int n, b, q, lb;
int stmax[N][N][10], stmin[N][N][10], h[N][N];

void init()
{
    lb = log2(b);
    for (int i = 1; i < 10; i++)
    {
        int len = pow(2, i - 1);
        if (len * 2 > n) break;

        for (int j = 1; j <= n; j++)
            for (int k = n - len * 2 + 1; k >= 1; k--)
            {
                stmax[j][k][i] = max(stmax[j][k][i - 1], stmax[j][k + len][i - 1]);
                stmin[j][k][i] = min(stmin[j][k][i - 1], stmin[j][k + len][i - 1]);
            }
    }
}

int rmq(int x, int y)
{
    int ma = 0, mi = inf;
    for (int i = x + b - 1; i >= x; i--)
    {
        ma = max(ma, max(stmax[i][y][lb], stmax[i][y + b - (1 << lb)][lb]));
        mi = min(mi, min(stmin[i][y][lb], stmin[i][y + b - (1 << lb)][lb]));
    }
    return ma - mi;
}

int main()
{
    scanf("%d%d%d", &n, &b, &q);
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
        {
            scanf("%d", &h[i][j]);
            stmax[i][j][0] = stmin[i][j][0] = h[i][j];
        }
    init();
    while (q--)
    {
        int x, y;
        scanf("%d%d", &x, &y);
        printf("%d\n", rmq(x, y));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值