1006-BBQ
题目大意:
给定一个字符串,每次操作可以删除或是插入一个字符,要求操作若干次后字符串从头开始,每四个一组,每组都符合"abba"的形式,问最少操作几次。
思路:
区间dp,dp[i]
表示使区间[1,i]
成为合法区间所需的最少操作次数。
转移的方程为
dp[i+k] = dp[i] + cal(i+1, i+k) k=[1,7]
向后转移的时候最多只要枚举长度为7的区间即可,因为将长度为8以上的区间变成合法区间的代价一定会大于长度在7以下的区间。
那么现在的问题就是如何计算区间[i+1, i+k]
的代价了。
可以发现对于一个长度为4的区间,abcd
和efgh
是等价的,二者变成合法区间的代价相同。
那么我们可以对一个子区间进行编码,最大长度为7,因此最多出现7种字符加上空字符一共8种。采用8进制,字母出现的顺序从小到达编码。
接下来就是预处理各种区间编码合法化的代价了。
因为编码种类不多,直接暴力+二维dp求解即可:
枚举每一种编码,枚举每一种合法区间的编码,计算将当前编码转化成合法编码的代价。
AC代码:
#include <bits/stdc++.h>
const int N = 1e6 + 10;
using namespace std;
int t[10]; // 当前序列
int g[8][5]; // g[i][j]表示当前序列的前i个转化成合法序列的前j个所需的最小操作数
int w[N]; // 合法化代价
int dp[N];
char s[N];
void dfs(int n, int c) //区间长度为n,最大编码为c
{
int m;
if (n)
{
m = n; //全部删除的代价
for (int a = 1; a <= 7; a++)
{
for (int b = 1; b <= 7; b++)
{
int p[5] = {0, a, b, b, a}; //合法序列
memset(g, 0x3f, sizeof(g));
for (int i = 0; i <= 4; i++)
g[0][i] = i;
for (int i = 0; i <= 7; i++)
g[i][0] = i;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= 4; j++)
g[i][j] = min({g[i - 1][j] + 1, g[i][j - 1] + 1, g[i - 1][j - 1] + (t[i] != p[j])});
//转移的两种情况:
// 1、t[i]!=p[j],从(i+1,j)的情况中删去一个字符或是从(i-1,j)的情况中插入一个字符,代价为1
// 2、t[i]==p[j],代价为0
if (g[n][4] < m) m = g[n][4];
}
}
}
if (n)
{
int idx = 0;
for (int i = 1; i <= n; i++)
idx = idx * 8 + t[i];
w[idx] = m;
}
if (n == 7) return;
n++;
for (int i = 1; i <= c + 1; i++)
{
t[n] = i;
dfs(n, c + 1);
}
}
void solve()
{
cin >> s + 1;
int n = strlen(s + 1), vis[130], idx, num;
for (int i = 1; i <= n; i++)
dp[i] = 1e9;
memset(vis, 0, sizeof(vis));
for (int i = 0; i < n; i++)
{
idx = num = 0;
for (int j = 1; j <= 7; j++)
{
if (!vis[s[i + j]]) vis[s[i + j]] = ++idx; // vis数组记录每个字符出现的顺序
num = num * 8 + vis[s[i + j]];
dp[i + j] = min(dp[i + j], dp[i] + w[num]);
}
for (int j = 1; j <= 7; j++) //将vis数组还原
vis[s[i + j]] = 0;
}
cout << dp[n] << endl;
}
int main()
{
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
dfs(0, 0);
int T;
cin >> T;
while (T--)
solve();
}
1007-Count Set
题目大意:
给定一个序列p,从中选出k个数作为序列T,要求对于任意x∈序列T,px != x。
求出序列T的构造方案数。
思路:
序列p可以处理成若干个有向环(如果环的大小为1,那就忽略,这个数肯定不能选)。
问题就变成了从这些环中选择k个数,且这k个数在环中不相邻。
当时想到了这一步,但是卡在了怎么算不相邻的组合数,下面是题解给的一种算法:
对于长度为m的普通序列,记选出的数为长度为2的段(保证了不相邻),不选的数为长度为1的段,从中选出k个数的方案就是C(k, m-k),相当于从m-k个段里选k个段使得长度为2。
对于环来说,只要选择一处断开即可成为普通的序列。
对断开处进行讨论:
- 如果断开处恰好是长度为2的段,那么方案数为C(k-1, m-k-1),因为确定了断开处为长度为2的段,所以问题变成从m-2的序列中选k-1个数。
- 如果断开处不是长度为2的段,那么和普通的序列相同,C(k, m-k)。
断开处是否为长度为2的段决定了两种分类不存在重复的情况。
那么在一个长度为m的环中选出k个数的方案就是:C(k-1, m-k-1) + C(k, m-k)。
然后列出每个环的生成函数,用分治NTT合并即可。
AC代码:
#include <bits/stdc++.h>
const int N = 1e6 + 5;
const long long mod = 998244353;
using namespace std;
int n, k, p[N], sz[N];
bool vis[N];
namespace poly
{
typedef long long ll;
const ll G = 3, Gi = 332748118;
ll fac[N], facinv[N];
int RR[N];
ll ksm(ll base, ll power) //快速幂
{
ll result = 1;
base %= mod;
while (power)
{
if (power & 1)
result = (result * base) % mod;
power >>= 1;
base = (base * base) % mod;
}
return result;
}
void getinv(int n) //线性求阶乘和阶乘逆元
{
fac[0] = facinv[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % mod;
facinv[n] = ksm(fac[n], mod - 2);
for (int i = n - 1; i >= 1; i--)
facinv[i] = facinv[i + 1] * (i + 1) % mod;
}
ll calc(int a, int b) //组合数,从a个里面选b个
{
if (a < b) return 0;
if (b == 0 || a == b) return 1;
return fac[a] * facinv[b] % mod * facinv[a - b] % mod;
}
ll inv(ll x) { return ksm(x, mod - 2); } //求逆元
int limit, L;
void NTT(vector<ll> &A, int type)
{
for (int i = 0; i < limit; ++i)
if (i < RR[i])
swap(A[i], A[RR[i]]);
for (int mid = 1; mid < limit; mid <<= 1)
{
ll wn = ksm(G, (mod - 1) / (mid * 2));
if (type == -1) wn = ksm(wn, mod - 2);
for (int len = mid << 1, pos = 0; pos < limit; pos += len)
{
ll w = 1;
for (int k = 0; k < mid; ++k, w = (w * wn) % mod)
{
int x = A[pos + k], y = w * A[pos + mid + k] % mod;
A[pos + k] = (x + y) % mod;
A[pos + k + mid] = (x - y + mod) % mod;
}
}
}
if (type == -1)
{
ll limit_inv = inv(limit);
for (int i = 0; i < limit; ++i)
A[i] = (A[i] * limit_inv) % mod;
}
}
//多项式乘法
void poly_mul(vector<ll> &a, vector<ll> &b, int tot)
{
a.resize(tot * 2);
b.resize(tot * 2);
for (limit = 1, L = 0; limit <= tot; limit <<= 1)
L++;
for (int i = 0; i < limit; ++i)
{
RR[i] = (RR[i >> 1] >> 1) | ((i & 1) << (L - 1));
}
NTT(a, 1);
NTT(b, 1);
for (int i = 0; i < limit; ++i)
a[i] = a[i] * b[i] % mod;
NTT(a, -1);
}
vector<ll> cal(int l, int r) //分治NTT
{
if (l == r)
{
vector<ll> res;
res.resize(sz[l] / 2 + 1);
res[0] = 1;
for (int i = 1; i <= sz[l] / 2; i++) //生成函数构造
res[i] = (calc(sz[l] - i, i) + calc(sz[l] - i - 1, i - 1)) % mod;
return res;
}
else
{
int mid = (l + r) / 2, len;
vector<ll> lp = cal(l, mid);
vector<ll> rp = cal(mid + 1, r);
len = lp.size() + rp.size();
poly_mul(lp, rp, lp.size() + rp.size());
if (lp.size() > k + 1)
lp.resize(k + 1);
else
lp.resize(len - 1);
return lp;
}
}
}
using poly::cal;
void solve()
{
int cnt = 0;
cin >> n >> k;
for (int i = 1; i <= n; i++)
{
cin >> p[i];
vis[i] = 0;
}
if (k == 0)
cout << "1" << endl;
else
{
for (int i = 1; i <= n; i++)
{
if (vis[i]) continue;
vis[i] = 1;
int it = p[i];
if (p[it] != it)
{
sz[++cnt] = 1;
while (!vis[it])
{
vis[it] = 1;
sz[cnt]++;
it = p[it];
}
}
}
if (cnt == 0)
cout << "0" << endl;
else
cout << cal(1, cnt)[k] << endl;
}
}
int main()
{
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
poly::getinv(N - 1);
int T;
cin >> T;
while (T--)
solve();
return 0;
}