2022“杭电杯” 中国大学生算法设计超级联赛(5)6 7 题解

1006-BBQ

题目大意:
给定一个字符串,每次操作可以删除或是插入一个字符,要求操作若干次后字符串从头开始,每四个一组,每组都符合"abba"的形式,问最少操作几次。

思路:
区间dp,dp[i]表示使区间[1,i]成为合法区间所需的最少操作次数。
转移的方程为
dp[i+k] = dp[i] + cal(i+1, i+k) k=[1,7]
向后转移的时候最多只要枚举长度为7的区间即可,因为将长度为8以上的区间变成合法区间的代价一定会大于长度在7以下的区间。
那么现在的问题就是如何计算区间[i+1, i+k]的代价了。
可以发现对于一个长度为4的区间,abcdefgh是等价的,二者变成合法区间的代价相同。
那么我们可以对一个子区间进行编码,最大长度为7,因此最多出现7种字符加上空字符一共8种。采用8进制,字母出现的顺序从小到达编码。
接下来就是预处理各种区间编码合法化的代价了。
因为编码种类不多,直接暴力+二维dp求解即可:
枚举每一种编码,枚举每一种合法区间的编码,计算将当前编码转化成合法编码的代价。

AC代码:

#include <bits/stdc++.h>
const int N = 1e6 + 10;
using namespace std;

int t[10];   // 当前序列
int g[8][5]; // g[i][j]表示当前序列的前i个转化成合法序列的前j个所需的最小操作数
int w[N];    // 合法化代价
int dp[N];
char s[N];
void dfs(int n, int c) //区间长度为n,最大编码为c
{
    int m;
    if (n)
    {
        m = n; //全部删除的代价
        for (int a = 1; a <= 7; a++)
        {
            for (int b = 1; b <= 7; b++)
            {
                int p[5] = {0, a, b, b, a}; //合法序列
                memset(g, 0x3f, sizeof(g));
                for (int i = 0; i <= 4; i++)
                    g[0][i] = i;
                for (int i = 0; i <= 7; i++)
                    g[i][0] = i;
                for (int i = 1; i <= n; i++)
                    for (int j = 1; j <= 4; j++)
                        g[i][j] = min({g[i - 1][j] + 1, g[i][j - 1] + 1, g[i - 1][j - 1] + (t[i] != p[j])});
                //转移的两种情况:
                // 1、t[i]!=p[j],从(i+1,j)的情况中删去一个字符或是从(i-1,j)的情况中插入一个字符,代价为1
                // 2、t[i]==p[j],代价为0
                if (g[n][4] < m) m = g[n][4];
            }
        }
    }
    if (n)
    {
        int idx = 0;
        for (int i = 1; i <= n; i++)
            idx = idx * 8 + t[i];
        w[idx] = m;
    }
    if (n == 7) return;
    n++;
    for (int i = 1; i <= c + 1; i++)
    {
        t[n] = i;
        dfs(n, c + 1);
    }
}

void solve()
{
    cin >> s + 1;
    int n = strlen(s + 1), vis[130], idx, num;
    for (int i = 1; i <= n; i++)
        dp[i] = 1e9;
    memset(vis, 0, sizeof(vis));
    for (int i = 0; i < n; i++)
    {
        idx = num = 0;
        for (int j = 1; j <= 7; j++)
        {
            if (!vis[s[i + j]]) vis[s[i + j]] = ++idx; // vis数组记录每个字符出现的顺序
            num = num * 8 + vis[s[i + j]];
            dp[i + j] = min(dp[i + j], dp[i] + w[num]);
        }
        for (int j = 1; j <= 7; j++) //将vis数组还原
            vis[s[i + j]] = 0;
    }
    cout << dp[n] << endl;
}

int main()
{
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    dfs(0, 0);
    int T;
    cin >> T;
    while (T--)
        solve();
}

1007-Count Set

题目大意:
给定一个序列p,从中选出k个数作为序列T,要求对于任意x∈序列T,px != x。
求出序列T的构造方案数。

思路:
序列p可以处理成若干个有向环(如果环的大小为1,那就忽略,这个数肯定不能选)。
问题就变成了从这些环中选择k个数,且这k个数在环中不相邻。
当时想到了这一步,但是卡在了怎么算不相邻的组合数,下面是题解给的一种算法:
对于长度为m的普通序列,记选出的数为长度为2的段(保证了不相邻),不选的数为长度为1的段,从中选出k个数的方案就是C(k, m-k),相当于从m-k个段里选k个段使得长度为2。
对于环来说,只要选择一处断开即可成为普通的序列。
对断开处进行讨论:

  • 如果断开处恰好是长度为2的段,那么方案数为C(k-1, m-k-1),因为确定了断开处为长度为2的段,所以问题变成从m-2的序列中选k-1个数。
  • 如果断开处不是长度为2的段,那么和普通的序列相同,C(k, m-k)。

断开处是否为长度为2的段决定了两种分类不存在重复的情况。

那么在一个长度为m的环中选出k个数的方案就是:C(k-1, m-k-1) + C(k, m-k)。

然后列出每个环的生成函数,用分治NTT合并即可。

AC代码:

#include <bits/stdc++.h>
const int N = 1e6 + 5;
const long long mod = 998244353;
using namespace std;

int n, k, p[N], sz[N];
bool vis[N];

namespace poly
{
    typedef long long ll;
    const ll G = 3, Gi = 332748118;
    ll fac[N], facinv[N];
    int RR[N];
    ll ksm(ll base, ll power) //快速幂
    {
        ll result = 1;
        base %= mod;
        while (power)
        {
            if (power & 1)
                result = (result * base) % mod;
            power >>= 1;
            base = (base * base) % mod;
        }
        return result;
    }

    void getinv(int n) //线性求阶乘和阶乘逆元
    {
        fac[0] = facinv[0] = 1;
        for (int i = 1; i <= n; i++)
            fac[i] = fac[i - 1] * i % mod;
        facinv[n] = ksm(fac[n], mod - 2);
        for (int i = n - 1; i >= 1; i--)
            facinv[i] = facinv[i + 1] * (i + 1) % mod;
    }

    ll calc(int a, int b) //组合数,从a个里面选b个
    {
        if (a < b) return 0;
        if (b == 0 || a == b) return 1;
        return fac[a] * facinv[b] % mod * facinv[a - b] % mod;
    }

    ll inv(ll x) { return ksm(x, mod - 2); } //求逆元

    int limit, L;

    void NTT(vector<ll> &A, int type)
    {
        for (int i = 0; i < limit; ++i)
            if (i < RR[i])
                swap(A[i], A[RR[i]]);
        for (int mid = 1; mid < limit; mid <<= 1)
        {
            ll wn = ksm(G, (mod - 1) / (mid * 2));
            if (type == -1) wn = ksm(wn, mod - 2);
            for (int len = mid << 1, pos = 0; pos < limit; pos += len)
            {
                ll w = 1;
                for (int k = 0; k < mid; ++k, w = (w * wn) % mod)
                {
                    int x = A[pos + k], y = w * A[pos + mid + k] % mod;
                    A[pos + k] = (x + y) % mod;
                    A[pos + k + mid] = (x - y + mod) % mod;
                }
            }
        }

        if (type == -1)
        {
            ll limit_inv = inv(limit);
            for (int i = 0; i < limit; ++i)
                A[i] = (A[i] * limit_inv) % mod;
        }
    }
    //多项式乘法
    void poly_mul(vector<ll> &a, vector<ll> &b, int tot)
    {
        a.resize(tot * 2);
        b.resize(tot * 2);
        for (limit = 1, L = 0; limit <= tot; limit <<= 1)
            L++;
        for (int i = 0; i < limit; ++i)
        {
            RR[i] = (RR[i >> 1] >> 1) | ((i & 1) << (L - 1));
        }
        NTT(a, 1);
        NTT(b, 1);
        for (int i = 0; i < limit; ++i)
            a[i] = a[i] * b[i] % mod;
        NTT(a, -1);
    }

    vector<ll> cal(int l, int r) //分治NTT
    {

        if (l == r)
        {
            vector<ll> res;
            res.resize(sz[l] / 2 + 1);
            res[0] = 1;
            for (int i = 1; i <= sz[l] / 2; i++) //生成函数构造
                res[i] = (calc(sz[l] - i, i) + calc(sz[l] - i - 1, i - 1)) % mod;
            return res;
        }
        else
        {
            int mid = (l + r) / 2, len;
            vector<ll> lp = cal(l, mid);
            vector<ll> rp = cal(mid + 1, r);
            len = lp.size() + rp.size();
            poly_mul(lp, rp, lp.size() + rp.size());
            if (lp.size() > k + 1)
                lp.resize(k + 1);
            else
                lp.resize(len - 1);
            return lp;
        }
    }
}
using poly::cal;

void solve()
{
    int cnt = 0;
    cin >> n >> k;
    for (int i = 1; i <= n; i++)
    {
        cin >> p[i];
        vis[i] = 0;
    }
    if (k == 0)
        cout << "1" << endl;
    else
    {
        for (int i = 1; i <= n; i++)
        {
            if (vis[i]) continue;
            vis[i] = 1;
            int it = p[i];
            if (p[it] != it)
            {
                sz[++cnt] = 1;
                while (!vis[it])
                {
                    vis[it] = 1;
                    sz[cnt]++;
                    it = p[it];
                }
            }
        }
        if (cnt == 0)
            cout << "0" << endl;
        else
            cout << cal(1, cnt)[k] << endl;
    }
}

int main()
{
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    poly::getinv(N - 1);
    int T;
    cin >> T;
    while (T--)
        solve();
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值