成为一名推荐系统工程师永远都不晚-
http://blog.csdn.net/qq_40027052/article/details/78579587
掌握核心原理的技能:
数学:微积分,统计学,线性代数
周边学科:信息论基础
推荐算法: CF,LR,SVM,FM,FTRL,GBDT,RF,SVD,RBM,RNN,LSTM,RL
数据挖掘:分类,聚类,回归,降维,特征选择,模型评价
实现系统检验想法的技能:
操作系统: Linux
编程语言: Python/R, Java/C++/C,sql,shell
RPC框架: thrift, Dubbo,gRPC
web服务: tornado, django, flask
数据存储: redis, hbase, cassandra, mongodb, mysql, hdfs,hive, kafka, elasticsearch
机器学习/深度学习: Spark MLib,GraphLab/GraphCHI,Angel,MXNet,TensorFlow,Caffe, Xgboost,VW,libxxx
文本处理: Word2vec,Fasttext,Gensim,NLTK
矩阵分解: Spark ALS,GraphCHI,implicit,qmf,libfm
相似计算: kgraph, annoy,nmslib, GraphCHI, columnSimilarities(spark.RowMatrix)
实时计算: Spark Streaming, Storm,Samza
掌握核心原理的技能:
数学:微积分,统计学,线性代数
周边学科:信息论基础
推荐算法: CF,LR,SVM,FM,FTRL,GBDT,RF,SVD,RBM,RNN,LSTM,RL
数据挖掘:分类,聚类,回归,降维,特征选择,模型评价
实现系统检验想法的技能:
操作系统: Linux
编程语言: Python/R, Java/C++/C,sql,shell
RPC框架: thrift, Dubbo,gRPC
web服务: tornado, django, flask
数据存储: redis, hbase, cassandra, mongodb, mysql, hdfs,hive, kafka, elasticsearch
机器学习/深度学习: Spark MLib,GraphLab/GraphCHI,Angel,MXNet,TensorFlow,Caffe, Xgboost,VW,libxxx
文本处理: Word2vec,Fasttext,Gensim,NLTK
矩阵分解: Spark ALS,GraphCHI,implicit,qmf,libfm
相似计算: kgraph, annoy,nmslib, GraphCHI, columnSimilarities(spark.RowMatrix)
实时计算: Spark Streaming, Storm,Samza