基本思想:每一步将一个待排序的元素,按其排序码的大小,插入到前面已经排好序的序列的合适位置上,直到元素全部插入完毕。
直接插入排序:
void InsertSort(int *arr, int size)
{
int i = 0;
int tmp = 0;
int end = 0;
for (i = 0; i < size; i++)
{
tmp = arr[i];
end = i;
while (end>0 && arr[end-1]>tmp)
{
arr[end] = arr[end - 1];
end--;
}
arr[end] = tmp;
}
}
空间复杂度:O(1)
时间复杂度:O(n*n)
稳定性:稳定
使用场景:对于一组有序的序列,想插入一个数据。
插入排序的优化:使用二分查找找到合适的插入位置(折半插入排序)
void InsertSort_OP(int *arr, int size)
{
int tmp = 0;
int i = 0;
int left = 0;
int right = 0;
for (i = 0; i < size; i++)
{
left = 0;
right = i-1;
tmp = arr[i];
while (left <= right)
{
int mid = left + ((right - left) >> 1);
if (tmp > arr[mid])
left = mid + 1;
if (tmp < arr[mid])
right = mid - 1;
}
int j = i;
while (j>left && arr[j-1]>tmp)
{
arr[j] = arr[j - 1];
j--;
}
arr[left] = tmp;
}
}
我们与直接插入的方法比较,可以看出,直接插入法,没插入一个元素,都要依次与有序元素序列每一个元素比较,最差的情况要比较N次,所以要排序N个元素,时间复杂度为O(n*n).而折半插入排序,每次先用折半查找到有序序列中的合适的位置,需要比较log以2为底的n次。找到合适位置后再移动有序序列中元素。
时间复杂度:最差的情况O(n*n)
最好的情况O(lgn)
空间复杂度:O(1)
稳定性:稳定
在大规模数据中,折半查找比直接插入排序要快。
希尔排序:将待排序的序列分成若干个子序列(由某一分量相隔的元素组成),分别对若干个子序列进行直接插入排序,之后依次缩小分量直到整个序列基本有序,再对整个序列进行直接插入排序,基于插入排序在基本有序的序列中效率极高,因此可以提高直接插入排序的效率。
void ShellSort(int* array, int size)
{
int i = 0;
int j = 0;
int tmp = 0;
int gap = size >> 1;
while (gap >= 1)
{
for (int k = 0; k < (size/2); k++)
{
for (i = k; i < size; i += gap)
{
j = i;
tmp = array[i];
while (j > 0 && tmp < array[j - gap] && (j-gap>=0))
{
array[j] = array[j - gap];
j -= gap;
}
array[j] = tmp;
}
}
gap /= 2;
}
}
时间复杂度:O(n*lgn) (lgn为 log以2为底的n)
空间复杂度:O(1)
稳定性:不稳定