排序——插入排序,希尔排序

基本思想:每一步将一个待排序的元素,按其排序码的大小,插入到前面已经排好序的序列的合适位置上,直到元素全部插入完毕。
直接插入排序:

void InsertSort(int *arr, int size)
{
    int i = 0;
    int tmp = 0;
    int end = 0;
    for (i = 0; i < size; i++)
    {
        tmp = arr[i];
        end = i;
        while (end>0 && arr[end-1]>tmp)
        {
            arr[end] = arr[end - 1];
            end--;
        }
        arr[end] = tmp;
    }
}

这里写图片描述
空间复杂度:O(1)
时间复杂度:O(n*n)
稳定性:稳定
使用场景:对于一组有序的序列,想插入一个数据。


插入排序的优化:使用二分查找找到合适的插入位置(折半插入排序)

void InsertSort_OP(int *arr, int size)
{
    int tmp = 0;
    int  i = 0;
    int left = 0;
    int right = 0;
    for (i = 0; i < size; i++)
    {
        left = 0;
        right = i-1;
        tmp = arr[i];
        while (left <= right)
        {
            int mid = left + ((right - left) >> 1);
            if (tmp > arr[mid])
                left = mid + 1;
            if (tmp < arr[mid])
                right = mid - 1;
        }
        int j = i;
        while (j>left && arr[j-1]>tmp)
        {
            arr[j] = arr[j - 1];
            j--;
        }
        arr[left] = tmp;
    }
}

我们与直接插入的方法比较,可以看出,直接插入法,没插入一个元素,都要依次与有序元素序列每一个元素比较,最差的情况要比较N次,所以要排序N个元素,时间复杂度为O(n*n).而折半插入排序,每次先用折半查找到有序序列中的合适的位置,需要比较log以2为底的n次。找到合适位置后再移动有序序列中元素。
时间复杂度:最差的情况O(n*n)
最好的情况O(lgn)
空间复杂度:O(1)
稳定性:稳定
在大规模数据中,折半查找比直接插入排序要快。


希尔排序:将待排序的序列分成若干个子序列(由某一分量相隔的元素组成),分别对若干个子序列进行直接插入排序,之后依次缩小分量直到整个序列基本有序,再对整个序列进行直接插入排序,基于插入排序在基本有序的序列中效率极高,因此可以提高直接插入排序的效率。

void ShellSort(int* array, int size)
{
    int i = 0;
    int j = 0;
    int tmp = 0;
    int gap = size >> 1;
    while (gap >= 1)
    {
        for (int k = 0; k < (size/2); k++)
        {
            for (i = k; i < size; i += gap)
            {
                j = i;
                tmp = array[i];
                while (j > 0 && tmp < array[j - gap] && (j-gap>=0))
                {
                    array[j] = array[j - gap];
                    j -= gap;
                }
                array[j] = tmp;
            }
        }
        gap /= 2;
    }

}

这里写图片描述
时间复杂度:O(n*lgn) (lgn为 log以2为底的n)
空间复杂度:O(1)
稳定性:不稳定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值