自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 论文阅读笔记--Clustered Federated Learning:Model-Agnostic Distributed Multitask Optimization Under Privacy

Introduction传统的Parameter Server(P-S)架构的联邦学习系统尝试训练出一个模型,让它能适用于每一个client的数据分布,这暗含了一个假设,模型的最优解θ∗\theta^*θ∗同时是所有client的最优解,各个client的模型是全等的(congruent)。也就是作者提到的Assumption 1:显然这个条件不是任何时候都可以得到满足的,作者列举了两种例子:1)模型fθf_{\theta}fθ​表达能力不够强,无法同时拟合所有client的数据集;2)各个客户端

2022-03-16 13:40:14 3167 2

原创 论文阅读笔记--Federated Continual Learning with Weighted Inter-client Transfer

本文提出了一种新的场景,联邦学习(FL)的每个client各自执行一系列的持续学习(Continual Learning)任务,为了说明这个场景的实际意义,文章给出了这样一个场景:若干个医院要通过一个联邦学习框架交流自己的知识,每个医院的模型都在进行自己的一系列的疾病预测任务。作者以一个持续学习算法(Additive Parameter Decomposition,APD)为基础,加上了client之间的知识的加权,构成了整个算法,其中APD是本文同一作者发表在2020年ICLR的论文。Continu

2022-02-01 12:58:49 3594 4

原创 论文阅读笔记--Data-Free Knowledge Distillation for Heterogeneous Federated Learning(FEDGEN)

链接:https://arxiv.org/abs/2105.10056v2这篇文章发表在ICML 2021,讲的是如何解决联邦学习中的数据异构问题。作者认为现有的知识蒸馏(Knowledge Distillation,K-D)的方法大多都需要server有一批代理数据(proxy data),协助K-D完成知识传授的过程,这有时候是做不到的。而且只修改全局模型并不能解决用户之间的异质性,反过来这还会影响全局聚合的质量。FEDGEN相比之前的算法有3个优越性:1)不需要server拥有额外的数据;2)K

2022-01-19 00:00:55 6622 10

原创 分布式机器学习&联邦学习论文阅读笔记(持续更新)

分布式机器学习&联邦学习论文阅读笔记一、开源框架FedML二、数据异构问题FedProxBridging Median and Mean Algorithms(NeurIPS 2020)三、边缘计算负载问题FedGKT(NeurIPS 2020)四、通信量压缩FetchSGD(ICML 2020)五、个性化联邦学习Ditto(ICML 2021)pFedHN(ICML2021)一、开源框架FedMLhttps://github.com/FedML-AI/FedML二、数据异构问题FedPr

2021-11-04 16:55:42 4348

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除