matlab中lsqr函数用法

本文详细介绍了MATLAB中用于求解大型稀疏线性方程组的LSQR函数,包括其语法、说明和示例。LSQR方法试图找到最小二乘解,即使系数矩阵不是方阵。它还支持参数化函数和预条件子,并提供了调整迭代次数和容差的选项。文章通过两个示例展示了LSQR函数的使用,其中一个示例使用矩阵-向量积的函数句柄。最后,文中引用了相关文献作为参考。
摘要由CSDN通过智能技术生成

lsqr

LSQR 方法

语法

x = lsqr(A,b)
lsqr(A,b,tol)
lsqr(A,b,tol,maxit)
lsqr(A,b,tol,maxit,M)
lsqr(A,b,tol,maxit,M1,M2)
lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec,lsvec] = lsqr(A,b,tol,maxit,M1,M2,x0)

说明

如果 A 保持一致,x = lsqr(A,b) 将尝试为 x 对线性方程组 A*x=b 求解,否则将尝试计算使得 norm(b-A*x) 最小的最小二乘解 xm×n 系数矩阵 A 无需为方阵,但应为大型稀疏矩阵。列向量 b 必须具有长度 m。可以将 A 指定为函数句柄 afun,这样 afun(x,'notransp') 将返回 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值