【数组3】leetcode34排序数组中第一个和最后一个位置

在这里插入图片描述

这道题目也是二分查找的变形,主要是考察使用二分查找来寻找左界右界
直接使用二分查找对应的解决就可以了,有一个讲的很好的文章可以一看:
详解二分查找算法
普通正常的二分查找

int left = 0;
int right = n - 1;//注意
while(left <= right)//注意
{
    int mid = (left + right) / 2;
    if(nums[mid] == target)
    {
        return mid;//注意
    }
    else if(nums[mid] > target)
    {
        right = mid - 1;//注意
    }
    else if(nums[mid] < target)
    {
        left = mid + 1;//注意
    }
}
return -1;

普通二分查找只能找到数组里存在的某一个位置,而寻找左界需要使用如下的方法:

寻找到的左界的下标可以理解为,数组里有几个小于target的数字

如果结果等于n,说明全部小于target,也就说明无target。

如果结果等于其他(包括0),验证循环结束时下标对应的数字是否等于target,如果等于则为左界,否则说明全部大于target。

int left = 0;
int right = n;//注意
while(left < right);//注意
{
    int mid = (left + right) / 2;
    if(nums[mid] == target)
    {
        right = mid;;//注意
    }
    else if(nums[mid] > target)
    {
        right = mid;//注意
    }
    else if(nums[mid] < target)
    {
        left = mid + 1;//注意
    }
}
if(left == n) {return -1;};//注意
return nums[left] == target ? left : -1;;//注意

寻找右界思路类似:

如果结果等于0,说明从num[0]到num[n-1]全都大于target,说明无target。

如果结果不等于0,验证循环结束时下标对应的数字 - 1是否等于target,如果等于则为右界,否则说明全部小于target。(减1的来源是,当target == num[mid]时用了mid = left + 1的处理,所以在循环结束时,l若不一定在数组范围内。。。反正这样就对了。。。)

int left = 0;
int right = n;//注意
while(left < right)//注意
{
    int mid = (left + right) / 2;
    if(nums[mid] == target)
    {
        left = mid + 1;//注意
    }
    else if(nums[mid] > target)
    {
        right = mid;//注意
    }
    else if(nums[mid] < target)
    {
        left = mid + 1;//注意
    }
}
if(right == 0) {return -1;}//注意
return nums[right - 1] == target ? right - 1 : -1;//注意

记录一下代码:

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        int n = nums.size();
        vector<int> re = {-1, -1};   
             
        int left = 0;
        int right = n;
        //找左界[l,r)
        while(left < right)
        {
            int mid = (left + right) / 2;
            if(nums[mid] == target)
            {
                right = mid;
            }
            else if(nums[mid] < target)
            {
                left = mid + 1;
            }
            else
            {
                right = mid;
            }
        }
        if(left == n){return{-1, -1};}
        re[0] = nums[left] == target ? left : -1;

        left = 0;
        right = n;
        while(left < right)
        {
            int mid = (left + right) / 2;
            if(nums[mid] == target)
            {
                left = mid + 1;
            }
            else if(nums[mid] < target)
            {
                left = mid + 1;
            }
            else
            {
                right = mid;
            }
        }
        if(right == 0){return{-1, -1};}
        re[1] = nums[right - 1] == target ? right - 1: -1;
        
        return re;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值