这道题目也是二分查找的变形,主要是考察使用二分查找来寻找左界和右界。
直接使用二分查找对应的解决就可以了,有一个讲的很好的文章可以一看:
详解二分查找算法
普通正常的二分查找:
int left = 0;
int right = n - 1;//注意
while(left <= right)//注意
{
int mid = (left + right) / 2;
if(nums[mid] == target)
{
return mid;//注意
}
else if(nums[mid] > target)
{
right = mid - 1;//注意
}
else if(nums[mid] < target)
{
left = mid + 1;//注意
}
}
return -1;
普通二分查找只能找到数组里存在的某一个位置,而寻找左界需要使用如下的方法:
寻找到的左界的下标可以理解为,数组里有几个小于target的数字。
如果结果等于n,说明全部小于target,也就说明无target。
如果结果等于其他(包括0),验证循环结束时下标对应的数字是否等于target,如果等于则为左界,否则说明全部大于target。
int left = 0;
int right = n;//注意
while(left < right);//注意
{
int mid = (left + right) / 2;
if(nums[mid] == target)
{
right = mid;;//注意
}
else if(nums[mid] > target)
{
right = mid;//注意
}
else if(nums[mid] < target)
{
left = mid + 1;//注意
}
}
if(left == n) {return -1;};//注意
return nums[left] == target ? left : -1;;//注意
寻找右界思路类似:
如果结果等于0,说明从num[0]到num[n-1]全都大于target,说明无target。
如果结果不等于0,验证循环结束时下标对应的数字 - 1是否等于target,如果等于则为右界,否则说明全部小于target。(减1的来源是,当target == num[mid]时用了mid = left + 1的处理,所以在循环结束时,l若不一定在数组范围内。。。反正这样就对了。。。)
int left = 0;
int right = n;//注意
while(left < right)//注意
{
int mid = (left + right) / 2;
if(nums[mid] == target)
{
left = mid + 1;//注意
}
else if(nums[mid] > target)
{
right = mid;//注意
}
else if(nums[mid] < target)
{
left = mid + 1;//注意
}
}
if(right == 0) {return -1;}//注意
return nums[right - 1] == target ? right - 1 : -1;//注意
记录一下代码:
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
int n = nums.size();
vector<int> re = {-1, -1};
int left = 0;
int right = n;
//找左界[l,r)
while(left < right)
{
int mid = (left + right) / 2;
if(nums[mid] == target)
{
right = mid;
}
else if(nums[mid] < target)
{
left = mid + 1;
}
else
{
right = mid;
}
}
if(left == n){return{-1, -1};}
re[0] = nums[left] == target ? left : -1;
left = 0;
right = n;
while(left < right)
{
int mid = (left + right) / 2;
if(nums[mid] == target)
{
left = mid + 1;
}
else if(nums[mid] < target)
{
left = mid + 1;
}
else
{
right = mid;
}
}
if(right == 0){return{-1, -1};}
re[1] = nums[right - 1] == target ? right - 1: -1;
return re;
}
};