OnlyOffice 协同编辑与 document.key 的关系详解

🔑 OnlyOffice 协同编辑与 document.key 的关系详解

在使用 OnlyOffice DocumentServer 进行协同编辑时,很多人都会接触到一个关键参数:document.key。它常常出现在我们集成 OnlyOffice 与业务系统(如 Nextcloud、Odoo、自建系统)的 JSON 配置中。那么,这个 document.key 到底有什么作用? 它和协同编辑的稳定性、安全性又有什么关系?为什么会出现“文件版本已更改。 将重新加载页面”的错误提示?本文来系统讲解。


1️⃣ 协同编辑的基本原理

OnlyOffice 的协同编辑流程大致如下:

  1. 用户请求文档:业务系统(如网盘、OA)生成一个配置 JSON 并传递给 DocumentServer。
  2. DocumentServer 渲染文档:根据 JSON 中的参数(文件地址、权限、用户信息等),启动一个文档编辑会话。
  3. WebSocket 通讯:多个用户在浏览器中通过 WebSocket 与 DocumentServer 保持连接,实时同步编辑操作。
  4. 回调保存:编辑完成后,DocumentServer 会通过回调 URL 将最终文件保存回业务系统。

在这个过程中,DocumentServer 必须要有一种机制来识别 同一个文档的不同编辑会话,否则就无法判断哪些用户属于同一个协同房间。这就是 document.key 的作用。


2️⃣ 什么是 document.key?

内容概要:本文是《目标检测入门指南》系列的第二部分,重点介绍用于图像分类的经典卷积神经网络(CNN)架构及其在目标检测中的基础作用。文章详细讲解了卷积操作的基本原理,并以AlexNet、VGG和ResNet为例,阐述了不同CNN模型的结构特点创新点,如深层网络设计、小滤波器堆叠和残差连接机制。同时介绍了目标检测常用的评估指标mAP(平均精度均值),解释了其计算方式和意义。此外,文章还回顾了传统的可变形部件模型(DPM),分析其基于根滤波器、部件滤波器和空间形变代价的检测机制,并指出DPM可通过展开推理过程转化为等效的CNN结构。最后,介绍了Overfeat模型,作为首个将分类、定位检测统一于CNN框架的先驱工作,展示了如何通过滑动窗口进行多尺度分类并结合回归器预测边界框。; 适合人群:具备一定计算机视觉和深度学习基础,从事或学习图像识别、目标检测相关方向的研发人员学生;适合希望理解经典CNN模型演进及目标检测早期发展脉络的技术爱好者。; 使用场景及目标:①理解CNN在图像分类中的核心架构演变及其对后续目标检测模型的影响;②掌握mAP等关键评估指标的含义计算方法;③了解DPMOverfeat的设计思想,为深入学习R-CNN系列等现代检测器打下理论基础。; 阅读建议:此资源以综述形式串联多个经典模型,建议结合原文图表参考文献进行延伸阅读,并通过复现典型模型结构加深对卷积、池化、残差连接等操作的理解,从而建立从传统方法到深度学习的完整认知链条。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值