- 博客(71)
- 收藏
- 关注
原创 使用Astra DB管理聊天历史记录的实践指南
Astra DB是一种无服务器的向量数据库,它基于Cassandra构建,并通过易于使用的JSON API提供服务。它特别适用于处理需要高可扩展性和低延迟的数据访问的应用场景。在这篇文章中,我们将探讨如何利用Astra DB存储和管理聊天应用中的消息历史记录。
2025-01-24 04:42:12
354
原创 使用TensorFlow Datasets加载多语言问答数据
MLQA(Multilingual Question Answering)数据集是一个用于评估多语言问答性能的基准数据集,涵盖了包括阿拉伯语、德语、西班牙语、英语、印地语、越南语和中文在内的七种语言。利用TensorFlow Datasets,我们可以轻松加载并进行处理。
2025-01-23 19:15:08
311
原创 利用Stripe API数据构建向量索引以提升LangChain应用的智能化
Stripe提供了一整套用于电子商务网站和移动应用程序的支付处理软件和API。结合使用LangChain的向量存储能力,可以提升数据检索及分析效率,扩展智能应用的实现能力。例如,在语言模型的交互中,我们可以利用Stripe数据来增强服务的个性化及准确性。
2025-01-23 18:41:30
374
原创 使用NewsURLLoader加载并处理在线新闻文章
随着自然语言处理技术的发展,将网络上的非结构化数据如新闻文章转换为结构化数据可极大地提高数据处理效率。是一个专为处理新闻URL而生的工具,它能自动抓取网页内容并提取出有价值的信息,如文章内容、标题和元数据。
2025-01-23 16:42:18
131
原创 使用Langchain加载Near区块链的NFT文档
NFTs是一种用于表示各种独特数字资产的区块链代币。Near区块链提供了一种便捷的方式来存储和管理NFT资产。然而,开发者在数据处理过程中需要一种有效的机制来从区块链加载这些数据。Langchain提供了一种强大的文档加载器,可以从Near区块链的NFT智能合约中加载数据。
2025-01-23 16:29:39
304
原创 使用Elasticsearch进行嵌入生成的实战指南
Elasticsearch是一款分布式的搜索引擎,广泛应用于全文搜索、日志分析等领域。随着机器学习技术的发展,Elasticsearch也集成了各种机器学习模型,其中包括文本嵌入生成模型,可以高效地将文本转换为语义向量。
2025-01-23 09:59:33
330
原创 使用LangChain与Clova Embeddings进行文本嵌入的详细实践
Clova是由Naver提供的强大AI平台,提供了一系列AI服务,其中包括文本嵌入服务。文本嵌入技术是自然语言处理(NLP)的基石之一,将文本转换为可供机器学习模型使用的向量格式。通过将语言表示为密集向量,我们能够在语义空间中度量文本之间的相似度,这对文本分类、聚类和信息检索等应用特别有用。
2025-01-23 09:36:59
303
原创 使用AwaDB和LangChain进行嵌入向量存储与搜索
随着自然语言处理技术的进步,大型语言模型已被广泛应用于各种任务中。这些模型通常需要使用嵌入向量来理解和处理文本数据。而高效地存储与检索这些嵌入向量是提升应用性能的关键。AwaDB提供了一套专门针对嵌入向量优化的数据库解决方案。
2025-01-23 09:09:09
359
原创 Aleph Alpha 语义嵌入的应用与实践
Aleph Alpha 的语义嵌入模型主要用于提升文本比较的准确性和有效性,其独特之处在于提供了对称和非对称两种嵌入策略。非对称嵌入适用于结构不相似的文本(如文档与查询),而对称嵌入适用于结构相似的文本。
2025-01-23 08:52:41
234
原创 快速上手 Yi LLM 与 LangChain 集成
随着 AI 2.0 的到来,大型语言模型 (LLM) 的发展进入了全新的阶段。由李开复博士创立的 01.AI 正在该领域引领潮流,推出了包括 Yi 系列在内的尖端大模型。这些模型的参数规模从 6B 到数千亿不等,涵盖多模态模型、开放 API 平台,以及开源模型如 Yi-34B/9B/6B 和 Yi-VL。对于开发者来说,使用这些 LLM 不仅需要性能稳定的环境,还需要简单高效的集成方式。本文将重点讲解如何使用LangChain与 Yi LLM 集成,为开发者提供便捷的开发接口。
2025-01-23 08:41:25
721
原创 使用Xinference进行LLM推理的实战指南
随着AI模型的日益复杂和强大,如何在本地设备甚至分布式环境中高效地部署和调用这些模型成为一个重要的技术挑战。Xinference提供了一种解决方案,它允许开发者在本地或集群环境中部署和使用多种先进的AI模型。
2025-01-23 08:35:41
468
原创 使用CTranslate2进行高效Transformer模型推理
随着深度学习模型的日益复杂,尤其是Transformer模型的普及,在推理阶段的性能优化变得尤为重要。CTranslate2是一个专门为加速和优化Transformer模型推理而设计的C++和Python库。通过应用多种性能优化技术,如权重量化、层融合、批次重排序等,CTranslate2能够在CPU和GPU上有效地降低模型的内存使用并加速推理。
2025-01-23 04:10:01
365
原创 利用LangChain与Banana模型进行交互示例
在机器学习领域,Banana致力于为开发者提供高效和易于使用的基础设施。在这篇文章中,我们将探讨如何使用LangChain库与Banana模型进行交互。LangChain是一种强大的工具,为语言模型的集成提供了便利。
2025-01-23 03:35:51
284
原创 使用 Llama2Chat 增强 Llama-2 进行对话 AI 应用
在当今的AI技术中,Llama-2不仅作为一个强大的语言模型存在,还被广泛应用于各种对话系统。为了更好地支持Llama-2的对话提示格式,Llama2Chat提供了一个通用的封装器,使其能够被用于支持多种LLM实现,如ChatHuggingFace、LlamaCpp、GPT4All等。在这篇文章中,我们将详细介绍如何使用Llama2Chat和LangChain库的组件来构建一个简单的对话应用。
2025-01-23 01:18:54
320
原创 使用AWS Bedrock构建智能对话应用
Amazon Bedrock 是一项完全托管的服务,它让开发者能够轻松试验和评估适用于其使用场景的基础模型,并通过提供私密的自定义功能来生成AI应用程序。使用Bedrock,你无需管理基础设施,可以安全地将生成式AI能力集成到已有的AWS服务中。
2025-01-22 21:26:37
451
原创 利用Typesense构建高效的内存搜索引擎
Typesense 是一款开源的内存搜索引擎,它特别重视性能和开发者体验。通过将整个索引存储在内存中(同时在磁盘上备份),Typesense 可以提供极高的查询速度。其简化的配置选项和良好的默认设置,使得开发者可以快速上手并进行自定义。
2025-01-22 19:57:05
171
原创 使用Predibase与LangChain整合LLM模型的实战指南
Predibase是一款高性能的AI基础设施平台,提供了多种机器学习模型的托管与部署服务。它通过与LangChain整合,实现了大规模语言模型的轻松调用和应用。LangChain则是一款流行的Python库,专注于语言模型的管道管理与协调,是开发智能应用的基础工具之一。
2025-01-22 17:14:55
312
原创 使用IMSDbLoader加载电影脚本的实战指南
IMSDb是一个在线的电影脚本数据库,其中包含了许多知名电影的完整剧本文本。这对于研究电影叙事结构、角色对话和编剧技巧非常有帮助。为了便于程序化访问这些剧本,工具应运而生,它是库的一部分,专门用于加载并解析IMSDb上的剧本。
2025-01-22 12:25:57
408
原创 使用Fiddler进行机器学习模型监控与改进
Fiddler是一个全面的平台,专为企业级机器学习模型的部署而设计。它可以帮助你在生产环境中实时监控模型性能,并提供易于理解的解释和分析工具。除了检测模型的偏差和漂移,Fiddler还可以帮助你做出改进,以提高模型的准确性和可靠性。
2025-01-22 10:03:58
326
原创 [在LangChain实验中使用Comet进行跟踪和优化]
Comet是一种机器学习平台,可以与现有的基础设施和工具集成,用于管理、可视化和优化模型,从训练运行到生产环境的监控。通过与LangChain结合使用,开发者可以轻松跟踪和评估生成的实验数据。
2025-01-22 07:07:14
221
原创 使用Arthur平台实现Chat LLM推理日志自动记录
模型推理的可追溯性:如何记录模型的输入输出历史,以便后续分析。数据存储与监控:如何将这些记录上传至远程管理平台以实现集中化管理。实时日志:如何在用户界面上反馈实时推理结果,同时在后台记录日志。通过结合Arthur回调处理器和LangChain的LLM构建能力,这些问题可以迎刃而解。Arthur提供了便捷的SDK和控制台界面,开发者可以轻松将模型推理历史上传至Arthur平台,并在仪表盘上进行可视化监控。
2025-01-22 04:10:58
877
原创 使用Amazon Kendra和LangChain提高搜索效率
Amazon Kendra是由AWS提供的一项智能搜索服务,旨在通过先进的自然语言处理(NLP)和机器学习算法实现强大的搜索功能。它能够跨越组织内的各种数据源,快速准确地帮助用户找到所需的信息,从而提升生产力和决策效率。Kendra支持多种语言,能够理解复杂的查询、同义词和语境意义,提供高度相关的搜索结果。
2025-01-22 02:17:42
658
原创 使用Hugging Face进行文本嵌入:实践指南
文本嵌入是将文本转换为向量的过程,使其在计算机中以数值形式表示,以便进行进一步的处理和分析。在众多提供文本嵌入的工具中,Hugging Face因其丰富的模型和方便的接口备受欢迎。
2025-01-22 01:44:29
480
原创 使用RAG-Vectara进行AI应用构建
RAG是一种结合信息检索(例如搜索引擎技术)与生成式AI(例如GPT)的新兴技术。通过首先从大规模文本数据库中检索相关文档,然后利用生成模型来生成答案,RAG能够在处理复杂查询时提供更准确的响应。Vectara是支持RAG实现的一种平台,它能高效处理大规模文本数据。
2025-01-21 22:11:09
412
原创 构建多模态幻灯片助理:基于GPT-4V和Chroma的解决方案
幻灯片通常包含大量的视觉信息,如图表和图形。结合多模态LLMs的能力,我们可以开发一种能自动从这些视觉数据中提取信息的系统。本文的解决方案基于GPT-4V,它可以为每个幻灯片中的图像生成摘要,并将这些摘要嵌入到Chroma中,从而实现智能问答。
2025-01-21 18:37:26
310
原创 如何为 LangChain 贡献文档:从本地构建到 API 参考
在软件开发中,文档是开发者与用户沟通的桥梁。LangChain 的文档由两部分组成:主文档和代码内文档。主文档位于,涵盖从教程到集成的广泛主题。而代码内文档则用于生成对外的 API 参考,由代码中的 docstring 自动生成。这两部分文档都是开发者与用户之间的重要信息来源。
2025-01-21 14:04:57
239
原创 探索和贡献LangChain的代码库结构
在开始贡献LangChain的代码或文档之前,了解仓库的高层次结构会非常有帮助。LangChain组织为一个,其中包含多个包。可以参考我们的了解如何将它们组合在一起。Makefile其他文件在根目录级别也存在,但它们的存在应该是不言自明的。欢迎随意浏览!
2025-01-21 13:36:55
284
原创 从 MultiPromptChain 迁移到 LangGraph 实现
在多轮对话或复杂任务中,如何智能地选择并调用合适的语言模型链(LLMChain)来处理不同类型的输入是一个重要的技术挑战。传统的 MultiPromptChain 通过一系列预定义的提示来引导模型选择,并生成响应。虽然这种方法在某些场景下有效,但它并不支持常见的聊天模型功能,例如消息角色和工具调用。下面我们将详细对比 MultiPromptChain 和 LangGraph 实现,并用实际代码演示如何使用 LangGraph 替代 MultiPromptChain。
2025-01-21 08:25:14
297
原创 从LLMChain迁移到LCEL:实现更清晰的AI交互
LLMChain是一个集成了提示模板(Prompt Template)、大型语言模型(LLM)和输出解析器的类,方便开发者快速搭建AI对话系统。然而,它的一些局限性,比如默认的输出解析器和有限的流处理能力,促使开发者考虑更现代更灵活的解决方案——LCEL。
2025-01-21 08:02:52
399
原创 使用RunnablePassthrough在LangChain中传递参数
LangChain是一个强大的框架,用于构建复杂的自然语言处理管道。其核心理念是通过可复用的"步骤"(runnables)来实现灵活的组合操作。在构建多步骤链时,类允许轻松传递之前步骤的数据以供后续步骤使用。
2025-01-20 21:15:05
327
原创 为语言模型和聊天模型添加即时工具调用功能
随着AI技术的发展,越来越多的应用需要语言模型能够直接调用外部工具,以执行计算、查询数据库或调用其他API等任务。一些模型已经针对这种需求进行了微调,但对于那些没有原生支持工具调用的模型,我们可以通过设计合理的提示(prompt)来实现这种能力。
2025-01-20 20:41:31
550
原创 使用Trubrics Callback Handler深入分析与管理AI模型用户反馈
在实际构建基于大语言模型的应用时,了解用户如何使用模型以及模型的响应效果,有助于快速迭代和改进模型表现。收集 Prompt:自动记录用户向模型输入的信息及与之对应的模型生成结果。反馈管理:支持用户对模型输出的反馈汇总与分析。项目定制:基于不同用户场景,对反馈信息进行分类和标记。借助 Trubrics 的 CallbackHandler,开发者可以轻松将这些功能集成到自己的 AI 模型中。
2025-01-15 01:47:45
613
原创 深入浅出 Azure AI Search 的设置与向量搜索实现
AzureAISearch(原AzureSearch和AzureCognitiveSearch)是微软提供的一款云端搜索服务,具备支持关键字搜索、向量搜索和混合搜索的能力。它帮助开发者在大规模数据上实现高效的信息检索,包括语义搜索和增强的搜索相关性。通过集成向量化能力,AzureAISearch成为实现AI搜索的得力工具。本文将结合实际代码,为大家展示如何在AzureAISearch中实现向量存储、文本检索以及各种搜索类型。自定义索引允许我们添加额外字段作为筛选条件。
2025-01-14 18:03:19
677
原创 使用Socrata API获取城市开放数据的实战指南
Socrata开放数据平台允许用户通过API访问大量的公共数据集。通过该平台,您可以获取诸如城市犯罪、311公共服务请求等数据。这些数据集可用于城市管理、学术研究和应用开发等多个领域。
2025-01-14 15:34:39
252
原创 如何使用 Yi LLM 集成 LangChain 实现强大的语言模型能力
由李开复博士创立的 01.AI 是全球 AI 2.0 的领军企业,推出了 Yi 系列大型语言模型 (LLMs),其模型参数范围从 60 亿到上千亿,并支持多模态模型和开源选项(如 Yi-34B/9B/6B 和 Yi-VL)。Yi LLM 提供开放 API,支持各种开发场景,特别适合中文及全球市场。本文将指导你如何通过 LangChain 与 Yi LLM 集成,快速实现自然语言生成及其他高级 AI 能力。
2025-01-14 12:07:41
757
原创 使用Runhouse和LangChain快速搭建自托管LLM服务
近年来,大型语言模型(LLM)如GPT系列模型的应用场景越来越广泛。然而,许多开发者希望能够自托管这些模型,以更好地控制成本、安全性和性能。Runhouse提供了一套工具,让用户可以轻松地连接本地或云端GPU资源,并与LangChain集成,快速搭建自托管的LLM服务。使用LangChain的PromptTemplate构建一个简单的提示模板,并加载Hugging Face模型。# 定义Prompt模板# 加载Hugging Face模型 (如 GPT-2)
2025-01-14 11:43:16
899
原创 使用LangChain与Anyscale构建大规模分布式LLM应用
LangChain是一个强大的工具,可以让开发者构建基于语言模型的链式逻辑,同时与多个后端LLM服务集成。而Anyscale则是一个稳定可靠的平台,基于Ray技术栈,支持分布式计算和AI模型管理。集成Anyscale和LangChain,调用Anyscale的API。利用Ray轻松分布式处理多个LLM查询,实现性能扩展。
2025-01-14 10:36:39
281
原创 使用 SolarChat 实现多语言翻译——以英语到韩语为例
多语言翻译是自然语言处理(NLP)领域的一个子领域,其重点是跨语言之间的语义理解和转换。传统翻译工具常受限于规则模板,而现代基于大语言模型(LLM)的翻译则能更好地处理上下文语义,生成更精确、流畅的译文。SolarChat是一种基于 LangChain 的聊天模型,提供了强大的上下文理解能力,可直接用于多语言翻译任务。在这篇文章中,我们将创建一个简单的翻译助手,将用户输入的英文内容翻译为韩语。
2025-01-14 10:19:47
405
原创 [轻松上手ChatGroq模型:从配置到调用]
ChatGroq是LangChain生态系统中的一个聊天模型组件,主要用于各种自然语言处理任务。通过集成ChatGroq,开发者可以轻松实现文本翻译、对话生成等功能。其灵活的输出格式和高效的模型架构,使其成为构建高性能AI应用的理想选择。
2025-01-14 09:52:45
311
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人