使用AWS Bedrock构建智能对话应用

使用AWS Bedrock构建智能对话应用

在使用生成式AI开发应用时,选择一个稳定、高性能的基础模型至关重要。Amazon Bedrock 提供了一种简化的方式,通过一个统一的API接口访问由AI21 Labs、Anthropic、Meta等领先AI公司提供的各种高性能基础模型。本文将从零开始带你了解如何使用AWS Bedrock进行智能对话应用的开发。

技术背景介绍

Amazon Bedrock 是一项完全托管的服务,它让开发者能够轻松试验和评估适用于其使用场景的基础模型,并通过提供私密的自定义功能来生成AI应用程序。使用Bedrock,你无需管理基础设施,可以安全地将生成式AI能力集成到已有的AWS服务中。

核心原理解析

通过Bedrock,你可以访问不同的语言模型来处理多种任务,如语言翻译、文本生成等。它采用了无服务器架构,你无需关心底层设施的管理,可以专注于应用开发。

代码实现演示

接下来,我们将展示如何使用LangChain的AWS集成包与Bedrock进行交互,来完成一个简单的语言翻译任务。

创建AWS账号并获取API凭证

在开始之前,确保你已经注册了AWS账号并获取了访问密钥和秘密密钥。如果需要模型调用的自动追踪,可以配置LangSmith API key。

import os
from getpass import getpass

# 设置AWS凭证
os.environ['AWS_ACCESS_KEY_ID'] = getpass("Enter your AWS Access Key ID: ")
os.environ['AWS_SECRET_ACCESS_KEY'] = getpass("Enter your AWS Secret Access Key: ")

# 设置LangSmith API追踪(可选)
# os.environ["LANGSMITH_API_KEY"] = getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

安装LangChain AWS集成包

%pip install -qU langchain-aws

实例化模型对象并生成聊天补全

from langchain_aws import ChatBedrock

# 实例化模型
llm = ChatBedrock(
    model_id="anthropic.claude-3-sonnet-20240229-v1:0",
    model_kwargs=dict(temperature=0),
    # 其他参数...
)

# 定义消息
messages = [
    (
        "system",
        "You are a helpful assistant that translates English to French. Translate the user sentence.",
    ),
    ("human", "I love programming."),
]

# 调用模型
ai_msg = llm.invoke(messages)

# 打印结果
print(ai_msg.content)

# 输出: J'aime la programmation.

使用Prompt模板进行链式调用

from langchain_core.prompts import ChatPromptTemplate

# 创建提示模板
prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are a helpful assistant that translates {input_language} to {output_language}.",
        ),
        ("human", "{input}"),
    ]
)

# 创建链式调用
chain = prompt | llm

# 执行翻译
translated_msg = chain.invoke(
    {
        "input_language": "English",
        "output_language": "German",
        "input": "I love programming.",
    }
)

# 输出德语翻译
print(translated_msg.content)

# 输出: Ich liebe Programmieren.

应用场景分析

使用Amazon Bedrock可以快速构建多语言翻译、智能客服、内容生成等应用场景。同时,Bedrock的无服务器架构和丰富的模型选择极大地提高了应用的生产力。通过LangChain,你还可以灵活地组合不同的模型功能。

实践建议

  1. 掌握API调用:熟练掌握API调用是构建AI应用的基础。
  2. 利用模板提升效率:使用Prompt模板可以简化输入输出的处理,提高代码复用性。
  3. 关注API变化:AWS服务和相关库可能会更新,及时查看官方文档以保持应用的兼容性。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值