使用AWS Bedrock构建智能对话应用
在使用生成式AI开发应用时,选择一个稳定、高性能的基础模型至关重要。Amazon Bedrock 提供了一种简化的方式,通过一个统一的API接口访问由AI21 Labs、Anthropic、Meta等领先AI公司提供的各种高性能基础模型。本文将从零开始带你了解如何使用AWS Bedrock进行智能对话应用的开发。
技术背景介绍
Amazon Bedrock 是一项完全托管的服务,它让开发者能够轻松试验和评估适用于其使用场景的基础模型,并通过提供私密的自定义功能来生成AI应用程序。使用Bedrock,你无需管理基础设施,可以安全地将生成式AI能力集成到已有的AWS服务中。
核心原理解析
通过Bedrock,你可以访问不同的语言模型来处理多种任务,如语言翻译、文本生成等。它采用了无服务器架构,你无需关心底层设施的管理,可以专注于应用开发。
代码实现演示
接下来,我们将展示如何使用LangChain的AWS集成包与Bedrock进行交互,来完成一个简单的语言翻译任务。
创建AWS账号并获取API凭证
在开始之前,确保你已经注册了AWS账号并获取了访问密钥和秘密密钥。如果需要模型调用的自动追踪,可以配置LangSmith API key。
import os
from getpass import getpass
# 设置AWS凭证
os.environ['AWS_ACCESS_KEY_ID'] = getpass("Enter your AWS Access Key ID: ")
os.environ['AWS_SECRET_ACCESS_KEY'] = getpass("Enter your AWS Secret Access Key: ")
# 设置LangSmith API追踪(可选)
# os.environ["LANGSMITH_API_KEY"] = getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
安装LangChain AWS集成包
%pip install -qU langchain-aws
实例化模型对象并生成聊天补全
from langchain_aws import ChatBedrock
# 实例化模型
llm = ChatBedrock(
model_id="anthropic.claude-3-sonnet-20240229-v1:0",
model_kwargs=dict(temperature=0),
# 其他参数...
)
# 定义消息
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
# 调用模型
ai_msg = llm.invoke(messages)
# 打印结果
print(ai_msg.content)
# 输出: J'aime la programmation.
使用Prompt模板进行链式调用
from langchain_core.prompts import ChatPromptTemplate
# 创建提示模板
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
# 创建链式调用
chain = prompt | llm
# 执行翻译
translated_msg = chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
# 输出德语翻译
print(translated_msg.content)
# 输出: Ich liebe Programmieren.
应用场景分析
使用Amazon Bedrock可以快速构建多语言翻译、智能客服、内容生成等应用场景。同时,Bedrock的无服务器架构和丰富的模型选择极大地提高了应用的生产力。通过LangChain,你还可以灵活地组合不同的模型功能。
实践建议
- 掌握API调用:熟练掌握API调用是构建AI应用的基础。
- 利用模板提升效率:使用Prompt模板可以简化输入输出的处理,提高代码复用性。
- 关注API变化:AWS服务和相关库可能会更新,及时查看官方文档以保持应用的兼容性。
如果遇到问题欢迎在评论区交流。
—END—