1. 摘要
情感原因提取(Emotion cause extraction, ECE)是一项旨在提取文本中某些情感背后潜在原因的任务,由于其广泛的应用,近年来受到了广泛的关注。但其存在两个不足:1)ECE在提取原因前必须对情感进行标注,这极大地限制了其在现实场景中的应用;2)首先对情感进行标注,然后提取原因的方法忽略了它们是相互指示的这一事实。这篇论文提出了一个新的任务:情感-原因对提取(emod -cause pair extraction, ECPE),它的目的是提取文档中潜在的情感和相应的原因。
2. 简介
图1展示了传统的ECE任务和新的ECPE任务之间的区别。以图1为例,给出emotion的标注:“happy”,ECE的目标是追踪两个对应的cause子句:“a policeman visit the old man with the lost money”和“and told him that the thief was caught”。在ECPE任务,目标是直接提取所有的情感原因对(emotion cause pair),包括(“老人非常高兴”,”一个警察拜访老人亏损”)和(“老人非常高兴”,“告诉他,小偷被抓住了”),不提供情感注释“幸福”。
为了解决这个新的ECPE任务,论文提出了一个两步框架。步骤1通过两种多任务学习网络将情感原因对提取任务转换为两个独立的子任务分别是情感提取(emotion extraction)和原因提取(cause extraction)。步骤2执行情感原因配对和筛选。论文将两个集合的所有元素组合成对,最后训练一个过滤器来排除不包含因果关系的情感原因对。
3. 方法
步骤1:个体情感和原因提取
步骤1的目标是分别为每个文档提取一组情感子句和一组原因子句。为此,提出了两种多任务学习网络。独立多任务学习和交互式多任务学习。后者是一个加强版,在前者的基础上进一步抓住了情感和原因之间的相关性。
1.独立多任务学习
一个文档包含多个子句:d = [c1,c2,…],每个ci也包含多个词ci = [wi1,wi2,…]。为了捕获这样的“word-clause-document”结构,使用一个分层的Bi-LSTM网络,它包含两个层,如图2所示。
由于文章在服务器上,全文内容详见http://bbit.vip/service/main.php?version=1&type=article&id=13