AI大模型在电商平台商品评价情感分析与摘要生成中的应用
关键词:大模型, 情感分析, 摘要生成, 电商平台, 用户评价, 产品推荐, 内容理解
1. 背景介绍
1.1 问题由来
随着电子商务的蓬勃发展,各大电商平台积累了海量用户评价数据,这些数据蕴含了丰富的用户反馈和产品信息。如何高效利用这些数据,提升电商平台的用户体验和产品推荐效果,成为了电商运营的重要课题。
情感分析(Sentiment Analysis)和摘要生成(Abstraction Generation)是自然语言处理(NLP)中的两个关键技术。通过情感分析,电商平台可以自动提取用户评价中的情感倾向,分析用户满意度,从而及时调整产品策略和售后服务。通过摘要生成,电商平台可以自动提取评价中的关键信息,生成简洁的摘要,便于用户和商家快速浏览。
近年来,基于深度学习的大语言模型在NLP任务上取得了显著进展,例如BERT、GPT-2、T5等模型。这些模型通过大规模无标签数据的预训练,掌握了丰富的语言知识和通用表征,具备强大的自然语言理解能力。将这些大语言模型应用于电商平台的用户评价情感分析与摘要生成任务,将大幅提升处理效率和准确性。