R语言数据框中的缺失值

缺失值记号

  1. NA (Not Available,不可用)表示缺失值
  2. NaN(Not a Number,非数值)表示不可能出现的值

检测缺失值
is.na()函数可以用来检测缺失值是否存在,如:

> y<-c(1,2,3,NA)
> is.na(y)
[1] FALSE FALSE FALSE  TRUE
> y<-c(1,2,3,NaN )
> is.na(y)
[1] FALSE FALSE FALSE  TRUE

可以看出 ,is.na()函数是如何作用在对象上的:它会返回相同大小的对象,如果某个位置是缺失值,则相应的位置会被改写成TRUE,否则会被改写成FALSE。

需要注意的是:

  1. 缺失值是无法比较的,即便是与缺失值自身的比较。
  2. R并不把无限的或者不可能出现的数值标记为缺失值。
  3. 含有缺失值的算术表达式和函数的结果也是缺失值
> y<-c(1,2,3,NA)
> is.na(y)
> [1] FALSE FALSE FALSE  TRUE
>  x<-sum(y)
> x
[1] NaN


消除缺失值
设置na.rm=TRUE

> x<-sum(y,na.rm=TRUE)
> x
[1] 6

缺失值一行删除
删除所有含有缺失数据的行
使用na.omit()

> mydata
  x1 x2 x3 x4
1  1  5  6  3
2  2  6  8  4
3  3  7 NA  5
4  4  8 12  6
> newdata<-na.omit(mydata)
> newdata
  x1 x2 x3 x4
1  1  5  6  3
2  2  6  8  4
4  4  8 12  6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值