ch3 数据采集
一、数据采集常见的问题
-
前期业务沟通不明确
业务人员没有和技术人员明确数据采集时需要注意的细节问题
-
采集时机和口径对不齐
-
采集点没有统一管理
-
版本迭代无法发现数据变化
二、用户行为数据采集方式:有埋点和无埋点
-
埋点和无埋点
其实我目前的工作中只接触过埋点,无埋点主要指前端通过SDK等直接收集数据。
-
适合无埋点的情况(”探索式数据场景“)
- 业务属性弱,交互属性强
- 需求及时性强,要快速落地得出结论
- 数据使用周期短,不需要长期监控
- 相对于准确性,更关注整体的趋势变化
- 非核心数据,数据可及性强
-
适合埋点的情况(”监控与分析式数据场景“)
- 数据稳定准确,反应真实的业务场景
- 需要长期监控,需要长期存储数据
- 业务属性丰富,可以做深度业务分析
- 监控核心KPI,指标需要少而精
- 需要设置数据权限,数据可及性弱
二者各有优劣势,需根据实际情况结合使用。以注册流程为例,如果仅是关注转化率,优化流程,仅使用无埋点即可;如业务方还关注性别、行业等分布情况,则涉及注册后的信息,并且需要长期关注和分析,适合采用埋点的方式。
-
客户端埋点和服务端埋点
这是根据位置不同的分类,客户端可以详细采集用户行为以及使用的设备,而服务端则可以准确上报业务数据。
-
三、如何高效落地数据采集
-
埋点方案四要素
-
确认事件与变量
按照UJM模型/产品关键流程涉及关键实践
-
明确事件的触发时机
我们要尽量选择贴近业务需求的数据口径,在可行性与业务贴合度之间找到最优解
-
规范命名
推荐“动词+名词“或者”名词+动词“的”驼峰命名法“
-
明确优先级
随时附赠有需求文档,在实践中可以参考
-
-
埋点的团队协作流程
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nHAoerGb-1642503676977)(.\ch3-1.png)]
<p align = 'right'> (图片来自于GrowingIO)</p>
-
数据指标管理
这里主要涉及指标命名、指标字典、指标分类和指标清理(指标的状况检查)
四、数据集成,搭建客户数据平台(CDP)
CRM的使用者只能基于自身权限获得部分客户属性数据,DMP的数多为生存较短的匿名数据、缺乏用户信息等,CDP能很好的弥补这两者的部分局限性。
CDP与数据中台的目标和特点基本一致,只不过数据中台会采集所有与企业有关的数据,而CDP更聚焦,仅采集所有与企业客户相关的数据。
-
从用户行为数据到客户数据平台
-
用户行为数据场景碎片化
企业与用户连接的渠道目前有三个阶段,第一个是以线下门店为主的单一渠道;第二个是以邮件、PC网站等为主的多渠道连接;第三是以各种移动APP为主的全渠道连接。
用户离散的线上、线下行为轨迹,以及多平台的流转,会无形中给单一用户赋予多个用户身份。
-
企业内部门多、多工具形成数据孤岛
-
-
客户数据平台的三种类型
-
数据型CDP
跨来源搜集信息,提供完整的用户画像
-
分析型CDP
增加可视化、分析行为和预测功能
-
综合型CDP
数据+分析+营销(根据历史行为预测用户行为)
-
-
实现客户数据平台的四大原则
-
客户视角原则
多来源数据整合,譬如识别同一用户的邮箱、cookie ID等
-
数据统一原则
-
系统开放原则
可以现有系统,如自动化工具,BI等无缝衔接
-
业务导向原则
书中同时给出了该公司实践中搭建的流程,主要同一多个来源的用户行为信心,生成用户标签系统(比如借助RFM系统)和用户画像系统,用户精细化运营、产品分析等。
-
-
电商如何搭建客户数据平台
书中更多是思路上的介绍,对电商业务的介绍对于我我这小白来说很有帮助
建的流程,主要同一多个来源的用户行为信心,生成用户标签系统(比如借助RFM系统)和用户画像系统,用户精细化运营、产品分析等。
-
电商如何搭建客户数据平台
书中更多是思路上的介绍,对电商业务的介绍对于我我这小白来说很有帮助
本文介绍了数据采集过程中常见的问题,包括业务沟通不明确和采集管理困难等。讨论了用户行为数据采集的两种方式——有埋点和无埋点,分别适合监控与分析式和探索式数据场景。强调了埋点方案的四要素,规范命名和明确优先级的重要性。此外,还探讨了如何通过CDP搭建客户数据平台,解决数据孤岛问题,实现用户画像和精细化运营。
1633

被折叠的 条评论
为什么被折叠?



