题目描述
给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。
样例描述
输入:n = 3
输出:5
示例 2:
输入:n = 1
输出:1
思路
方法一:数学
- 卡特兰数。 由题意,1~n可以组成的二叉搜索树种树为
通过n + 1和n项的公式作比可以得出递推公式为,
方法二:递归 + 记忆化搜索 - 求二叉树的种类数。可以视为,求左子树的种类和右子树的种数,显然整个二叉树的种数等于左子树种数乘右子树种数。
- i从0开始枚举左子树的种类数,总数减去左子树减去根结点个数就是右子树的个数,这一步直接递归。
- 直接递归会超时,由于求f(n)肯定用到f(n - 1), f(n - 2)…因此可以存下每一步的结果,也就是记忆化。 用哈希表存储n作为key的每一种个数的结果。
方法三:动态规划
- 递归加记忆化搜索很容易推到动态规划。
- 状态转移方程就是递归函数,略加修改即可。f(n) 表示 n 个结点的二叉搜索树的种数
代码
方法一:
class Solution {
public int numTrees(int n) {
long C = 1; //防止计算中溢出
for (int i = 1; i < n; i ++ ) {
C = C * 2 * (2 * i + 1) / (i + 2);
}
return (int)C;
}
}
方法二:
class Solution {
Map<Integer, Integer> cache = new HashMap<>();
private int dfs(int n) {
if (n <= 1) return 1;
else if (cache.containsKey(n)) {
return cache.get(n);
}
else {
int c = 0;
//二叉树种数等于左子树种数 * 右子树种数
for (int i = 0; i < n; i ++ ) {
//右子树结点个数等于总数减去左子树结点减去根结点
c += dfs(i) * dfs(n - i - 1);
}
cache.put(n, c);
return c;
}
}
public int numTrees(int n) {
return dfs(n);
}
}
方法三:
class Solution {
public int numTrees(int n) {
int f[] = new int[n + 1];
//如果左/右子树有一边为空,则总的种数等于另外一边子树的种类 * 1
f[0] = 1;//做乘法 所以初始化为1
//枚举总的结点个数i
for (int i = 1; i <= n; i ++ ) {
//枚举左子树的个数j
for (int j = 0; j < i; j ++ ) {
f[i] += f[j] * f[i - j - 1];
}
}
return f[n];
}
}