Leetcode--Java--96. 不同的二叉搜索树

题目描述

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

样例描述

输入:n = 3
输出:5
示例 2:

输入:n = 1
输出:1

思路

方法一:数学

  1. 卡特兰数。 由题意,1~n可以组成的二叉搜索树种树为
    在这里插入图片描述
    通过n + 1和n项的公式作比可以得出递推公式为,
    在这里插入图片描述
    方法二:递归 + 记忆化搜索
  2. 求二叉树的种类数。可以视为,求左子树的种类和右子树的种数,显然整个二叉树的种数等于左子树种数乘右子树种数。
  3. i从0开始枚举左子树的种类数,总数减去左子树减去根结点个数就是右子树的个数,这一步直接递归。
  4. 直接递归会超时,由于求f(n)肯定用到f(n - 1), f(n - 2)…因此可以存下每一步的结果,也就是记忆化。 用哈希表存储n作为key的每一种个数的结果。
    在这里插入图片描述

方法三:动态规划

  1. 递归加记忆化搜索很容易推到动态规划。
  2. 状态转移方程就是递归函数,略加修改即可。f(n) 表示 n 个结点的二叉搜索树的种数
    在这里插入图片描述

代码

方法一:

class Solution {
    public int numTrees(int n) {
        long C = 1; //防止计算中溢出
        for (int i = 1; i < n; i ++ ) {
          C = C * 2 * (2 * i + 1) / (i + 2);
        }
        return (int)C;
    }
}

方法二:

class Solution {
    
      Map<Integer, Integer> cache = new HashMap<>();
    private int dfs(int n) {
        if (n <= 1) return 1;
        else if (cache.containsKey(n)) {
            return cache.get(n);
        }
        else {
            int c = 0;
            //二叉树种数等于左子树种数 * 右子树种数
            for (int i = 0; i < n; i ++ ) {
                //右子树结点个数等于总数减去左子树结点减去根结点
                c += dfs(i) * dfs(n - i - 1);
            }
            cache.put(n, c);
            return c;
        }
    }

    public int numTrees(int n) {
      return dfs(n);
    }
}

方法三:

class Solution {
    public int numTrees(int n) {
       int f[] = new int[n + 1];
       //如果左/右子树有一边为空,则总的种数等于另外一边子树的种类 * 1 
       f[0] = 1;//做乘法 所以初始化为1 
        //枚举总的结点个数i
       for (int i = 1; i <= n; i ++ ) {
          //枚举左子树的个数j
           for (int j = 0; j < i; j ++ ) {
               f[i] += f[j] * f[i - j - 1];
           }
       } 
       return f[n];

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值