不同的搜索二叉树个数--动态规划

给定整数n,求所有可能的二叉搜索树的个数。使用动态规划方法,通过递推公式计算以每个节点为根的二叉搜索树数量,即f(i)=G(i-1)*G(n-i),其中G(n)表示n个节点的二叉搜索树总个数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

leetcode 96

不同的二叉搜索树个数

题目描述:给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?

示例

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

解法:动态规划

思路:找出所有种类二叉搜索树,我们一般想到的就是,从根节点出发,左右孩子的二叉搜索树类型个数加上1就是从总的二叉搜索树个数,也就是这其实可以用动态规划的思想解题,我们可以通过递推的方式求出所有的二叉搜索树总和

设n个节点的二叉搜索树个数为G(n),f(i)为以i为根的二叉搜索树个数,则

G(n)=f(1)+f(2)+f(3)+...+f(n)

上面的f(1)->f(n)其实就是拥有n个节点的树的所有孩子节点(包括根节点本身),所以这就印证了我们前面的思路了

我们看一下f(i)又等于什么?

f(i)=G(i-1)*G(n-i)

如何理解这一公式?

我们知道,G(i-1)就是i节

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值