题目描述
在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
如果题目有解,该答案即为唯一答案。
输入数组均为非空数组,且长度相同。
输入数组中的元素均为非负数。
样例描述
示例 1:
输入:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
思路
枚举 + 优化 + 类似贪心思想
- 暴力枚举思路如下:
上述过程就是先枚举起点i,只要满足能到达下一个站i+1,然后枚举i + 1是否能到达i+2,如果到某站j到不了下一个,说明就不能走完环形。 - 对上述过程,可以进行优化,如果i最多只能走到j,那么i到j之间的所有站必然也不能走到j + 1站
反证法,如果i到j中间有站(作为起点,初始没有油)可以到j + 1,那么直接从i到k还会剩余点油,都走不到j + 1,显然不可能! - 所以下次枚举起点直接从j + 1开始即可。
代码
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int n = gas.length;
//枚举起点
for (int i = 0; i < n; ) {
int left = 0; //起点剩余油量
//枚举走多少步,0~n - 1步
int j = 0;
while (j < n) {
//下一个位置
int k = (i + j) % n; //有环,要取模
left += gas[k] - cost[k];
//油量为负数就表示不能作为起点,或者不能走完
if (left < 0) break;
j ++;
}
//可以走完
if (j == n) return i;
//注意这里j表示步数,所以下一个起点位置是从i走到 j + 1开始
i = i + j + 1;
}
return -1;
}
}