BZOJ 2038 小Z的袜子(莫队算法)

2038: [2009国家集训队]小Z的袜子(hose)

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 16678  Solved: 7615
[Submit][Status][Discuss]

Description

作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。

Input

输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。

Output

包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)

Sample Input

6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6

Sample Output

2/5
0/1
1/1
4/15
【样例解释】
询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
【数据规模和约定】
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。

HINT

 

Source

版权所有者:莫涛

 

【思路】

题目大意,给定一个序列,每次询问区间L到R中,任意取两个数,这两个数相同的概率。

我们把整个序列分为大概\sqrt{N}块,每次对区间[l, r]求的答案设为sum,即sum = \frac{\sum C_{cnt[i]}^2}{C_{r - l + 1}^2},这里i代表落在该区间的数,cnt[i]代表区间中i的个数。假设区间转移了,也就是说边界l ± 1或者r ± 1,那么答案会在因某个数的±1而改变,设x为l或r新移动而得到的下标,那么sum会变成sum - (cnt[x]^2 - cnt[x]) +[ (cnt[x] \pm 1)^2 - (cnt[x]\pm 1)],这样就能一步转移了。

莫队算法复杂度计算:左边界移动代价为O(Q\sqrt{N} + N),右边界移动代价为O(N\sqrt{N}),故总复杂度在O(N\sqrt{N})级别。

 

【代码】

//******************************************************************************
// File Name: BZOJ_2038.cpp
// Author: Shili_Xu
// E-Mail: shili_xu@qq.com
// Created Time: Thu 08 Nov 2018 03:14:46 PM CST
//******************************************************************************

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <cmath>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<int, int> pii;
#define x first
#define y second

const int MAXN = 5e4 + 5;

struct query {
    int l, r, id, block;

    bool operator<(const query &another) const
    {
        if (block == another.block) return r < another.r;
        return block < another.block;
    }
};

int n, q, s;
ll sum;
int a[MAXN], cnt[MAXN];
ll ans_a[MAXN], ans_b[MAXN];
query qu[MAXN];

ll gcd(ll a, ll b)
{
    return (!b ? a : gcd(b, a % b));
}

void modify(int pos, int num)
{
    sum += 2 * cnt[a[pos]] * num + num * num - num;
    cnt[a[pos]] += num;
}

int main()
{
    scanf("%d %d", &n, &q);
    s = (int)sqrt(n);
    for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
    memset(cnt, 0, sizeof(cnt));
    for (int i = 1; i <= q; i++) {
        scanf("%d %d", &qu[i].l, &qu[i].r);
        qu[i].id = i;
        qu[i].block = qu[i].l / s;
    }
    sort(qu + 1, qu + 1 + q);
    sum = 0;
    int l = 1, r = 0;
    for (int i = 1; i <= q; i++) {
        while (r < qu[i].r) modify(++r, 1);
        while (r > qu[i].r) modify(r--, -1);
        while (l < qu[i].l) modify(l++, -1);
        while (l > qu[i].l) modify(--l, 1);
        ans_a[qu[i].id] = sum;
        ans_b[qu[i].id] = (ll)(qu[i].r - qu[i].l + 1) * (qu[i].r - qu[i].l);
    }
    for (int i = 1; i <= q; i++) {
        int tmp = gcd(ans_a[i], ans_b[i]);
        ans_a[i] /= tmp;
        ans_b[i] /= tmp;
        printf("%lld/%lld\n", ans_a[i], ans_b[i]);
    }
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值