2038: [2009国家集训队]小Z的袜子(hose)
Time Limit: 20 Sec Memory Limit: 259 MB
Submit: 16678 Solved: 7615
[Submit][Status][Discuss]Description
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。Input
输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。
Output
包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)
Sample Input
6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6Sample Output
2/5
0/1
1/1
4/15
【样例解释】
询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
【数据规模和约定】
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。HINT
Source
【思路】
题目大意,给定一个序列,每次询问区间L到R中,任意取两个数,这两个数相同的概率。
我们把整个序列分为大概块,每次对区间[l, r]求的答案设为sum,即,这里i代表落在该区间的数,cnt[i]代表区间中i的个数。假设区间转移了,也就是说边界l ± 1或者r ± 1,那么答案会在因某个数的±1而改变,设x为l或r新移动而得到的下标,那么sum会变成,这样就能一步转移了。
莫队算法复杂度计算:左边界移动代价为,右边界移动代价为,故总复杂度在级别。
【代码】
//******************************************************************************
// File Name: BZOJ_2038.cpp
// Author: Shili_Xu
// E-Mail: shili_xu@qq.com
// Created Time: Thu 08 Nov 2018 03:14:46 PM CST
//******************************************************************************
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <cmath>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<int, int> pii;
#define x first
#define y second
const int MAXN = 5e4 + 5;
struct query {
int l, r, id, block;
bool operator<(const query &another) const
{
if (block == another.block) return r < another.r;
return block < another.block;
}
};
int n, q, s;
ll sum;
int a[MAXN], cnt[MAXN];
ll ans_a[MAXN], ans_b[MAXN];
query qu[MAXN];
ll gcd(ll a, ll b)
{
return (!b ? a : gcd(b, a % b));
}
void modify(int pos, int num)
{
sum += 2 * cnt[a[pos]] * num + num * num - num;
cnt[a[pos]] += num;
}
int main()
{
scanf("%d %d", &n, &q);
s = (int)sqrt(n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
memset(cnt, 0, sizeof(cnt));
for (int i = 1; i <= q; i++) {
scanf("%d %d", &qu[i].l, &qu[i].r);
qu[i].id = i;
qu[i].block = qu[i].l / s;
}
sort(qu + 1, qu + 1 + q);
sum = 0;
int l = 1, r = 0;
for (int i = 1; i <= q; i++) {
while (r < qu[i].r) modify(++r, 1);
while (r > qu[i].r) modify(r--, -1);
while (l < qu[i].l) modify(l++, -1);
while (l > qu[i].l) modify(--l, 1);
ans_a[qu[i].id] = sum;
ans_b[qu[i].id] = (ll)(qu[i].r - qu[i].l + 1) * (qu[i].r - qu[i].l);
}
for (int i = 1; i <= q; i++) {
int tmp = gcd(ans_a[i], ans_b[i]);
ans_a[i] /= tmp;
ans_b[i] /= tmp;
printf("%lld/%lld\n", ans_a[i], ans_b[i]);
}
return 0;
}