时限:1000ms 内存限制:65536K 总时限:3000ms
描述:
FJ打算好好修一下农场中某条凹凸不平的土路。按奶牛们的要求,修好后的
路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能
同时出现在修好的路中。
整条路被分成了N段,N个整数A_1, ... , A_N (1 <= N <= 2,000)依次描述
了每一段路的高度(0 <= A_i <= 1,000,000,000)。FJ希望找到一个恰好含N个
元素的不上升或不下降序列B_1, ... , B_N,作为修过的路中每个路段的高度。
由于将每一段路垫高或挖低一个单位的花费相同,修路的总支出可以表示为:
|A_1 - B_1| + |A_2 - B_2| + ... + |A_N - B_N|
请你计算一下,FJ在这项工程上的最小支出是多少。FJ向你保证,这个支出
不会超过2^31-1。
输入:
第1行: 输入1个整数:N
第2..N+1行: 第i+1行为1个整数:A_i
输出:
第1行: 输出1个正整数,表示FJ把路修成高度不上升或高度不下降的最小花费
输入样例:
7
1
3
2
4
5
3
9
输出样例:
3
提示:
输出说明:
FJ将第一个高度为3的路段的高度减少为2,将第二个高度为3的路段的高度
增加到5,总花费为|2-3|+|5-3| = 3,并且各路段的高度为一个不下降序列
1,2,2,4,5,5,9。