题意大意:
花最少的代价将一个序列变为不下降序列
solution:
保证最优:
每个值修改后还会是原序列中的值
。
序列s为h[i]排序后序列。
f[i][j]表示a序列前i个数变为不下降序列且h[i]被改成s[j]的最小代价。
f[i][j]=min{f[i-1][k]
}
+abs(s[j]-h[i])(1<=k<=j)
开g[i][j]记录min{f[i-1][k]}。
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<cstdio>
using namespace std;
const int N=2010;
int n,res=2147483646;
int h[N],s[N];
int f[N][N],g[N][N];
inline bool cmp
(const int a,const int b)
{return a>b;}
void Dp()
{
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
f[i][j]=g[i-1][j]+abs(h[i]-s[j]);
if(j==1)g[i][j]=f[i][j];
else g[i][j]=min(f[i][j],g[i][j-1]);
}
for(int i=1;i<=n;++i)
res=min(res,f[n][i]);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{scanf("%d",&h[i]);s[i]=h[i];}
sort(s+1,s+n+1);Dp();
sort(s+1,s+n+1,cmp);Dp();
printf("%d\n",res);
return 0;
}