As Laplace operator may detect edges as well as noise (isolated, out-of-range), it may be desirable to smooth the image first by convolution with a Gaussian kernel of width
The Gaussian and its first and second derivatives and are shown here:
This 2D LoG can be approximated by a 5 by 5 convolution kernel such as
The kernel of any other sizes can be obtained by approximating the continuous expression of LoG given above. However, make sure that the sum (or average) of all elements of the kernel has to be zero (similar to the Laplace kernel) so that the convolution result of a homogeneous regions is always zero.
The edges in the image can be obtained by these steps:
- Applying LoG to the image
- Detection of zero-crossings in the image
- Threshold the zero-crossings to keep only those strong ones (large difference between the positive maximum and the negative minimum)