自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(466)
  • 资源 (17)
  • 论坛 (1)

原创 Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Netw

Abstract许多现实世界的序列学习任务都需要从有噪声的、未分段的输入数据中预测标签序列。例如,在语音识别中,声音信号被转录成单词或子单词单元。递归神经网络(rnns)是一种功能强大的序列学习器,似乎非常适合这类任务。然而,由于它们需要预先分割的训练数据,以及将其输出转换为标签序列的后处理,因此它们的适用性受到了限制。本文提出了一种新的训练神经网络直接标记未分段序列的方法,从而解决了这两个问...

2019-09-23 21:31:42 543

原创 A Closer Look at Spatio temporal Convolutions for Action Recognition

Abstract在本文中,我们讨论了用于视频分析的几种时空卷积形式,并研究了它们对动作识别的影响。 从观察到2DCNN应用于视频的各个帧的动机来看,我们的动机仍然是动作识别方面的佼佼者。 在这项工作中,我们通过经验证明了在残差学习框架内3D CNN相对于2D CNN的准确性优势。 此外,我们表明将3D卷积滤波器分解为单独的空间和时间分量会显着提高准确性。 我们的经验研究导致了新的时空卷积块“ ...

2019-09-22 10:23:17 148

原创 Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset

Abstract当前动作分类数据集(UCF-101和HMDB-51)中视频的匮乏,使得很难确定好的视频架构,因为大多数方法在现有的小规模基准测试中都获得了类似的性能。本文根据新的Kinetics Human Action Video数据集重新评估了最先进的体系结构。Kinetics的数据量增加了两个数量级,其中包括400个人类动作课程,每个课程超过400个剪辑,它们是从逼真的,具有挑战性的Yo...

2019-09-21 22:12:42 179

原创 Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks

Abstract卷积神经网络(cnn)被认为是一类有效的图像识别模型。然而,当利用CNN学习时空视频表示时,这并非不平凡。一些研究表明,执行3D卷积是一种捕获视频中时空维度的有益方法。然而,从头开始开发非常深的3d cnn会导致昂贵的计算成本和内存需求。一个有效的问题是,为什么不为3D CNN回收现成的2D网络。在本文中,我们通过在空间域(相当于2D CNN)上模拟3×3×3卷积滤波器(相当于...

2019-09-21 20:56:17 429

原创 Highway Networks

Abstract有大量的理论和经验证据表明,神经网络的深度是其成功的关键因素。但是,随着深度的增加,网络训练变得越来越困难,非常深层的网络训练仍然是一个悬而未决的问题。在这个扩展的摘要中,我们介绍了一种新的体系结构,旨在简化非常深层网络的基于梯度的训练。我们将具有这种架构的网络称为高速公路网络,因为它们允许在信息高速公路上的多个层次上畅通无阻的信息流。该体系结构的特点是使用门控单元,该门控单元...

2019-09-21 11:02:53 125

原创 Wide Residual Networks

Abstract深残留网络被证明能够扩展到数千层,并且仍然具有改进的性能。然而,每提高1%的精度,就要花费将近两倍的层数,因此训练非常深的剩余网络就有一个减少特征重用的问题,这使得这些网络训练非常缓慢。为了解决这些问题,本文对resnet块的结构进行了详细的实验研究,在此基础上提出了一种新的结构,该结构减少了剩余网络的深度,增加了剩余网络的宽度。我们称所得的网络结构为宽剩余网络(WRNs),并...

2019-09-21 09:58:31 321

原创 Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet

Abstract本研究的目的是确定现有的视频数据集是否有足够的数据来训练具有时空三维核的非常深卷积神经网络(cnns)。近年来,三维cnns在动作识别领域的性能水平有了显著的提高。然而,到目前为止,传统的研究只探索了相对较浅的三维结构。在现有的视频数据集上,我们研究了从浅到深的各种3d cnn的体系结构。根据这些实验的结果,得出以下结论可获得:(i)resnet-18训练导致ucf-101、h...

2019-09-20 22:02:16 399

原创 R-C3D: Region Convolutional 3D Network for Temporal Activity Detection

Abstract我们解决了连续的活动检测问题,未剪辑的视频流。这是一项困难的任务需要提取有意义的时空特征捕捉活动,准确定位开始和结束每次活动的时间。我们引入了一种新的模型,区域卷积3d网络(r-c3d),它使用三维全卷积网络对视频流进行编码,然后生成候选的时间区域(包含活动),最后将选定区域分类为特定活动。由于方案和分类管道之间的卷积特征共享,节省了计算量。整个模型采用端到端的训练,同时...

2019-09-20 10:38:02 263

原创 Online Detection and Classification of Dynamic Hand Gestures with Recurrent 3D Convolutional Neural

Abstract在用于人机交互的真实系统中,动态手势的自动检测和分类具有挑战性,因为(1)人们在做手势、识别和分类方面存在很大的差异;(2)系统必须在线工作,以避免在执行手势和分类之间出现明显的延迟;事实上,一个负延迟(手势完成前的分类)是可取的,因为反馈给用户可以是真正即时的。在本文中,我们使用一个递归的三维卷积神经网络来解决这些挑战,该网络可以同时从多模态数据中检测和分类动态手势。我们使用...

2019-09-17 15:47:06 390

原创 Learning Spatiotemporal Features with 3D Convolutional Networks

Abstract我们提出了一种简单而有效的时空特征学习方法,使用在大规模有监督视频数据集上训练的深三维卷积网络。我们的发现有三个方面:1)与二维变换相比,三维变换更适合时空特征学习;(2)3×3×3卷积核较小的同构结构是三维转换网络性能最好的结构之一;3)我们学习的特性,即c3d(卷积3d),具有简单的线性分类,在4个不同基准上优于最新方法,并且与其他2个基准上的当前最佳方法具有可比性。此外,...

2019-09-16 21:22:13 145

原创 LFFD: A Light and Fast Face Detector for Edge Devices

Abstract人脸检测技术作为一项基础性的应用技术,一直部署在存储空间有限、计算能力低的边缘设备上。介绍了一种用于边缘检测的光快速人脸检测仪。该方法是自由锚的,属于一阶段分类。具体来说,我们重新思考了在人脸检测背景下,接收场(rf)和有效接收场(erf)的重要性。本质上,某一层神经元的RFs在输入图像中有规律地分布,这些RFs是自然的“锚”。该方法结合了rf锚和合适的rf步长,能够检测出覆盖...

2019-09-16 16:05:55 911

原创 基于VS2025+Opencv+Kinect V2 SDK实现的彩色、深度、红外图像的存储代码

#include <stdio.h>#include <Kinect.h>#include <windows.h>#include <opencv2\highgui.hpp>#include <opencv2\imgproc.hpp>#include <opencv2\core.hpp> #include &lt...

2019-09-11 12:35:16 210

原创 实现基于VS2015+Kinect V2 SDK+Opencv的深度图像显示以及存储

配置Opencv环境打开VS2015,新建一个C++项目(空白项目)。 在【解决方案资源管理器】中右键项目名称,选择【属性】->【平台】选择【x64】,选择【属性】->【配置】选择【Debug】 在【解决方案资源管理器】中右键项目名称,选择【属性】->【配置属性】->【VC++目录】->【常规】->【包含目录】添加如下内容【D:\OpenCV\build...

2019-09-10 22:37:06 110

原创 PFLD: A Practical Facial Landmark Detector

Abstract准确、高效、紧凑是实用的面部地标探测器的关键。为了同时考虑这三个问题,本文研究了一个在野外环境(如无约束姿势、表情、灯光和遮挡条件)下具有良好检测精度和超实时速度的移动设备整洁模型。更具体地说,我们定制了一个与加速技术相关的端到端单级网络。在训练阶段,每个样本的旋转信息被估计为几何规则化的地标定位,然后不涉及测试阶段。设计了一种新的损失方法,除了考虑几何规则化之外,还可以通过将...

2019-09-03 20:17:31 724

原创 FaceBoxes: A CPU Real-time Face Detector with High Accuracy

Abstract虽然在人脸检测方面取得了巨大进展,但由于人脸检测的有效模型往往在计算上难以实现,因此,在CPU上实现实时速度和保持高性能仍然是一个有待解决的难题。为了解决这一难题,我们提出了一种新型的人脸检测器,名为“人脸盒”,在速度和精度上都具有优异的性能。具体来说,我们的方法有一个轻量级但功能强大的网络由快速消化的卷积层(RDCL)和多尺度卷积层(MSCL)组成的结构。 RDCL的设计目...

2019-08-30 19:25:19 86

原创 FingerInput: Capturing Expressive Single-Hand Thumb-to-Finger Microgestures

Abstract单手拇指到手指的微手势显示出很好的表现力,快速和直接的互动前景。然而,开创性的手势识别系统都集中在特定的手势子集上。我们仍然缺乏能够更全面地检测一系列可能的手势的系统。在本文中,我们提出了一个统一的拇指到手指微手势设计空间。基于该设计空间,我们提出了一种基于深度传感和卷积神经网络的拇指对手指手势识别系统。它是第一个能够准确检测传感器和传感器之间的接触点的系统。因此,它可以检测到...

2019-08-30 15:32:57 115

原创 DigiTouch: Reconfigurable Thumb-to-Finger Input and Text Entry on Head-mounted Displays

Abstract输入是可穿戴系统的一个重要问题,特别是头戴式虚拟和增强现实显示器。现有的输入技术要么缺乏表达能力,要么可能不被社会接受。作为一种替代方法,拇指到手指的接触提供了一种很有希望的输入机制,这种机制很微妙,但能够进行复杂的交互。我们介绍了一种基于手套的可重构输入装置Digitouch,它可以通过感应连续的触摸位置和压力来实现拇指到手指的触摸交互。我们的新型传感技术提高了连续触摸跟踪的...

2019-08-30 10:16:32 117

原创 Red Hat7配置163YUM源

背景\需求RedHat 7自带的yum源需要付费注册,未注册情况下会报错误. RedHat 7成功注册后,用yum repolist all检查源数目为0。这时候需要将RedHat 7自带的yum源 替换成CentOS 7免费源。实现步骤检查Red Hat 7包含哪些初始的yum包。 rpm -qa |grep yum 删除系统中原有的YUM源rpm -qa|gre...

2019-08-28 08:47:14 531

原创 Object Detection with Discriminatively Trained Part-Based Models

Abstract我们描述了一种基于多尺度可变形零件模型混合的物体检测系统。 我们的系统能够表示高度可变的对象类,并在PASCAL对象检测挑战中实现最先进的结果。虽然可变形零件模型已经变得非常流行,但它们的价值还没有在诸如PASCAL数据集之类的困难基准上得到证明。我们的系统依赖于使用部分标记数据进行判别训练的新方法。我们将用于数据挖掘硬边否定示例的边缘敏感方法与我们称之为潜在SVM的形式相结合...

2019-08-08 14:52:55 88

原创 YOLOv3: An Incremental Improvement

Abstract我们向YOLO提供一些更新。我们做了一些小的设计更改,以使其更好。我们还训练了这个非常膨胀的新网络。 它比上次有点大,但更准确。它仍然很快,不用担心。 在320×320时,YOLOv3以22.2毫秒的速度运行22毫秒,与SSD一样准确,但速度提高了三倍。当我们查看旧的.5 IOU mAP检测指标YOLOv3非常好。它在Titan X上在51毫秒内达到了57.9 AP50,相比之...

2019-08-08 10:25:39 92

原创 YOLO9000: Better, Faster, Stronger

Abstract我们介绍YOLO9000,这是一种先进的实时物体检测系统,可以检测超过9000个对象类别。 首先,我们提出了对YOLO检测方法的各种改进,既有新颖的,也有先前的工作。改进的模型YOLOv2是标准检测任务(如PASCAL VOC和CSOO)的最新技术。采用新颖的多尺度训练方法,相同的YOLOv2模型可以运行不同的尺寸,在速度和精度之间提供简单的权衡。在67 FPS,YOLOv2在...

2019-08-08 09:41:41 70

原创 You Only Look Once: Unified, Real-Time Object Detection

Abstract我们提出了一种新的物体检测方法YOLO。 关于物体检测的先前工作重新使用分类器来执行检测。 相反,我们将对象检测作为回归问题构建到空间上分离的边界框和相关的类概率。 单个神经网络在一次评估中直接从完整图像预测边界框和类概率。 由于整个检测流水线是单个网络,因此可以直接在检测性能上进行端到端优化。 我们的统一架构非常快。 我们的基础YOLO模型以每秒45帧的速度实时处理图像。 ...

2019-08-07 20:46:24 237

原创 Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks

Abstract由于各种姿势,照明和遮挡,在无约束环境中的面部检测和对准是具有挑战性的。最近的研究表明,深度学习方法可以在这两项任务上取得令人瞩 在这封信中,我们提出了一个深度级联多任务框架,它利用检测和对齐之间的内在联系来提高其性能。特别是,我们的框架利用级联架构,通过三个阶段精心设计的深度卷积网络,以粗略的方式预测面部和地标位置。此外,我们提出了一种新的在线硬样本挖掘策略,可进一步提高实践...

2019-08-07 19:26:04 144

原创 Learning Transferable Architectures for Scalable Image Recognition

Abstract开发神经网络图像分类模型通常需要重要的架构工程。 在本文中,我们研究了一种直接在感兴趣的数据集上学习模型体系结构的方法。由于这种方法在数据集很大时很昂贵,我们建议在小型数据集上搜索架构构建块,然后将块传输到更大的数据集。这项工作的关键贡献是设计了一个新的搜索空间(我们称之为“NASNet搜索空间”),它可以实现可转移性。 在我们的实验中,我们在CIFAR-10数据集上搜索最佳...

2019-08-07 18:30:53 61

原创 Neural Architecture Search With Reinforcement Learning

Abstract神经网络是功能强大且灵活的模型,适用于图像,语音和自然语言理解中的许多困难学习任务。 尽管它们取得了成功,神经网络仍然难以设计。在本文中,我们使用循环网络生成神经网络的模型描述,并通过强化学习训练此RNN,以最大化验证集上生成的体系结构的预期准确性。在CIFAR-10数据集上,我们的方法从头开始,可以设计一种新颖的网络架构,可以在测试集精度方面与人类发明的最佳架构相媲美。我们的...

2019-08-07 15:17:41 133

原创 Pelee:A Real-Time Object Detection System On Mobile Devices

Abstract在具有有限计算能力和存储器资源的移动设备上运行卷积神经网络(CNN)模型的日益增长的需求促进了对高效模型设计的研究。 近年来已经提出了许多高效的体系结构,例如,MobileNet,ShuffleNet和MobileNetV2。然而,所有这些模型都严重依赖于深度可分离卷积,这在大多数深度学习框架中缺乏有效的实现。在这项研究中,我们提出了一个名为PeleeNet的高效架构,它采用传...

2019-08-07 10:33:35 89

原创 SqueezeNext: Hardware-Aware Neural Network Design

Abstract在嵌入式系统上部署神经网络的主要障碍之一是现有神经网络的大内存和功耗。在这项工作中,我们介绍了SqueezeNext,这是一个新的神经网络架构系列,其设计是通过考虑先前的架构(如SqueezeNet)以及神经网络加速器的仿真结果来指导的。这个新网络能够将AlexNet在ImageNet基准测试中的准确度与112倍以下的参数相匹配,其中一个更深层次的变体能够实现VGG-19精度,...

2019-08-07 09:49:39 193

原创 The One Hundred Layers Tiramisu: Fully Convolutional Dense Nets for Semantic Segmentation

Abstract用于语义图像分割的最先进方法建立在卷积神经网络(CNN)上。 典型的分割体系结构由(a)负责提取粗略语义特征的下采样路径组成,其后是(b)训练的上采样路径,以恢复模型输出处的输入图像分辨率(c)帖子处理模块(例如条件随机场)来重新定义模型预测。 最近,一种新的CNN架构,即密集连接卷积网络(DenseNets),在图像分类任务中表现出色。 DenseNets的想法基于以下观察...

2019-08-06 19:05:05 75

原创 Fully Convolutional Networks for Semantic Segmentation

Abstract卷积网络是强大的可视化模型,可以产生特征层次结构。我们展示了卷积网络本身,训练端到端,像素像素,超过了语义分割的最新技术水平。我们的主要洞察力是构建“完全卷积”网络,该网络接收任意大小的输入并通过有效的推理和学习产生相应大小的输出。我们详细描述了完全卷积网络的空间,解释了它们在空间密集预测任务中的应用,并绘制了与先前模型的连接。我们将当代分类网络(AlexNet [22],VG...

2019-08-06 16:44:21 128

原创 Mask R-CNN

Abstract我们提出了一个概念上简单,灵活,通用的对象实例分割框架。我们的方法可以有效地检测图像中的对象,同时为每个实例生成高质量的分割掩码。该方法称为掩模R-CNN,通过添加用于预测与现有分支并行的对象掩模的分支来扩展更快的R-CNN以用于边界框识别。Mask R-CNN很容易训练,只需很少的开销就可以以5 fps的速度加速R-CNN。此外,Mask R-CNN很容易推广到其他任务,例如...

2019-08-05 20:22:39 52

原创 MnasNet: Platform-Aware Neural Architecture Search for Mobile

Abstract为移动设备设计卷积神经网络(CNN)具有挑战性,因为移动模型需要小而快,但仍然准确。虽然已经致力于在各个方面设计和改进移动CNN,但是当有如此多的架构可能性需要考虑时,手动平衡这些权衡是非常困难的。在本文中,我们提出了一种自动移动神经架构搜索(MNAS)方法,该方法明确地将模型延迟合并到主要目标中,以便搜索可以识别在准确性和延迟之间实现良好折衷的模型。与以前的工作不同,我们的方...

2019-08-05 17:09:24 214

原创 Hand Pose Regression via A Classification-guided Approach

Abstract单深度图像的手部姿态估计近年来取得了很大的进展,但目前的数据处理方法还不能满足人机交互等应用要求。一个可能的原因是现有的方法试图学习所有类型手部深度图像的一般回归函数。为了解决这个问题,我们提出了一种新的“分而治之”方法,包括分类步骤和回归步骤。首先,使用卷积神经网络分类器将输入手深图像分类为不同类型。然后,利用一个有效且有效的多路径级联随机森林回归器来估计手关节的三维位...

2019-08-03 16:37:29 118

原创 CondenseNet: An Efficient DenseNet using Learned Group Convolutions

Abstract深度神经网络越来越多地用于计算资源有限的移动设备上。 在本文中,我们开发了CondenseNet,这是一种具有前所未有的效率的新型网络架构。 它将密集连接与称为学习组卷积的新模块相结合。 密集连接有助于网络中的特征重用,而学习组卷积消除了该特征重用的层之间的连接是超级的。 在测试时,我们的模型可以使用标准组卷积来实现,从而允许在实践中进行有效的计算。 我们的实验表明,Conde...

2019-08-02 21:40:51 109

原创 Maxout Networks

Abstract我们考虑设计模型的问题,以利用最近引入的称为丢失的近似模型平均技术。 我们定义了一个名为maxout的简单新模型(之所以如此命名,因为它的输出是一组输入的最大值,因为它是丢失的自然伴随),旨在通过丢失促进优化,并提高丢失的快速近似模型平均值的准确性 技术。 我们凭经验验证模型是否成功完成了这两项任务。 我们使用maxout和dropout来展示四种基准数据集的最新分类性能:MN...

2019-08-02 19:21:59 100

原创 Aggregated Residual Transformations for Deep Neural Networks

Abstract我们提出了一种简单,高度模块化的网络架构,用于图像分类。我们的网络是通过重复构建块来构建的,该构建块聚合了具有相同拓扑的一组转换。我们的简单设计产生了一个同构的多分支架构,只需要设置一些超参数。这种策略暴露了一个新的维度,我们将其称为“基数”(转换集的大小),作为深度和宽度维度之外的一个重要因素。在ImageNet-1K数据集上,我们凭经验表明,即使在保持复杂性的限制条件下,增...

2019-08-02 10:58:58 100

原创 Network In Network

Abstract我们提出了一种新的深度网络结构,称为“网络中的网络”(NIN),以增强接收领域中局部补丁的模型可区分性。传统的卷积层使用线性滤波器,然后是非线性激活函数来扫描输入。相反,我们构建具有更复杂结构的微神经网络来抽象接收领域内的数据。我们用多层感知器实例化微神经网络,这是一种有效的函数逼近器。通过以与CNN类似的方式在输入上滑动微网络来获得特征图; 然后将它们送入下一层。深NIN可以...

2019-08-02 09:41:39 243

原创 Xception: Deep Learning with Depthwise Separable Convolutions

Abstract我们将卷积神经网络中的起始模解释为在规则卷积和非纵向可分离卷积运算(非纵向卷积和非纵向卷积)之间的中间步骤。在这种情况下,深度可分离卷积可以理解为具有最大数量塔的初始模块。这一观察结果使我们提出了一种新颖的深度卷积神经网络结构,其灵感来自于Inception,其中Inception模块已经被深度可分离的卷积所取代。 我们证明这个被称为Xception的体系结构在ImageNe...

2019-08-01 11:17:47 97

原创 Squeeze-and-Excitation Networks

Abstract卷积神经网络(CNN)的中心构建块是卷积运算符,它使网络能够通过在每层的局部接收域内融合空间和信道方式信息来构建信息特征。大量先前的研究已经研究了这种关系的空间组成部分,试图通过提高整个特征层次中空间编码的质量来增强CNN的表征能力。 在这项工作中,我们将重点放在通道关系上,并提出一个新颖的架构单元,我们称之为“挤压 - 激发”(SE)块,通过明确地建模通道之间的相互依赖性来...

2019-08-01 10:38:55 346

原创 ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

Abstract目前,神经网络架构设计主要由计算复杂度的间接度量(即FLOP)引导。然而,直接度量(例如,速度)还取决于诸如存储器访问成本和平台特性之类的其他因素。 因此,这项工作建议评估目标平台上的直接度量,而不仅仅考虑FLOP。基于一系列对照实验,这项工作为高效的网络设计提供了几个实用指南。因此,提出了一种称为ShuffleNet V2的新架构。全面的消融实验验证了我们的模型在速度和准确度...

2019-07-31 19:01:17 258

原创 ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Abstract我们介绍了一种名为ShuffleNet的极其计算高效的CNN架构,该架构专为计算能力非常有限的移动设备而设计。新架构采用了两种新的操作,逐点组卷积和通道切换,大大降低了计算成本,同时保持了准确性。ImageNet分类和MS COCO物体检测的实验证明了ShuffleNet优于其他结构的优越性能,例如: 在40MFLOP的计算预算下,其在ImageNet分类任务中比MobileN...

2019-07-31 16:42:35 390

基于Python的手指尖检测

本程序主要实现一个简单的手势检测,其是基于Python开发的。其主要利用常规的肤色模型来实现手部的定位,这种方式往往会检测出视频中出现的脸部。对于移动的手部,我们首先利用腐蚀与膨胀操作来对图像进行操作,然后利用凸多边形检测以及凸残缺检测来实现手指尖的检测以及统计。

2019-07-10

基于肤色以及几何处理的手势检测

本项目主要研究并介绍了基于肤色以及几何处理的手指检测、手势跟踪,并提供了完整的可执行程序。其使用的语言为C++,VS版本为2015.

2019-07-08

基于反向投影的手部分割---增强版

本项目是一个基于Opencv实现的手部分割,其实现的主要原理便是利用“漫水填充”、“反向投影”等方式来实现手部的分割。

2019-07-08

基于反向投影的手部分割

本实例代码主要是基于Opencv开发的,其使用的语言为C++。其主要实现了基于肤色的手部分割,实现较为简单,项目中包含了测试程序以及测试图片,可以直接运行。

2019-07-08

基于vivo-Y97的adb驱动

为了能够实现vivoY97手机与电脑的数据无线传输,需要安装Adb驱动以及相应的基于Vivo的USB驱动程序

2019-03-30

WebDriver(Chrome、IE、Edge、FireFox)

为了能够实现selenium驱动的安装,本人在这里提供了常用的几种WebDriver:Chrome、IE、Edge、FireFox。

2019-03-30

基于牛顿法的l0测度流场平滑

本示例代码主要是基于《Image Smoothing via L0 Graient Minimization》以及《Denoising point sets via L0 minimization》来实现图像的l0流场平滑

2018-12-06

laplacian平滑的迭代处理

本代码主要是通过使用laplacian平滑处理方式,并结合自己构造的能量公式,实现迭代处理流场,实现流场平滑。

2018-11-21

实现基于L0测度的图像平滑

本代码主要实现了基于L0测度的图像平滑处理,其主要根据L0平滑的性质,本人自己构造了一个能量矩阵以及处理方式。

2018-11-21

基于laplacian的图像平滑以及向量场绘制

本代码基于Opencv,实现了针对图像每个像素的标架绘制。利用Eigen库实现了基于laplacian方程的流场平滑。

2018-11-21

基于laplacian方程的流场平滑

本资源是基于laplacian方程而进行的流场平滑,其中关于梯度的求解主要利用了roberts、prewitt、sobel等算子。

2018-11-12

Vector Field Smoothing Via Heat Flow

该论文主要讲述了如何使用Heat Flow 来进行流场的平滑处理

2018-11-12

基于L0测度下的平滑图像

本代码主要是根据论文Image Smoothing via L0 Gradient Minimization 中提及的算法实现的L0测度下的图像平滑,其利用C++实现的。

2018-11-12

Opencv各类算子的使用展示与laplace平滑处理

此代码主要展示了如何使用sobel算子、prewitt算子、roberts算子、scharr算子求取图像的梯度,以及用laplace来进行平滑处理。

2018-11-05

opengl+openmesh+obj

利用openmesh读取obj模型文件,利用opengl绘制模型文件,该模型文件为斯坦福大学的兔子模型文件。该代码可以直接在vs2015上运行,并且已经配置好了所需要的opengl\openmesh等所有的库。

2018-10-15

人脸识别(sdk)

人脸识别(sdk)

2017-04-16

数据库(相关操作)

数据库(相关操作)

2017-04-16

铿锵的玫瑰的留言板

发表于 2020-01-02 最后回复 2020-01-06

空空如也
提示
确定要删除当前文章?
取消 删除