基于Tensorflow的可视化梯度下降

代码 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D LR = 0.1 REAL_PARAMS = [1.2,...

2019-05-20 22:53:58

阅读数 34

评论数 0

Batch Normalization的实例

代码 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt ACTIVATION = tf.nn.relu N_LAYERS = 7 N_HIDDEN_UNITS = 30 def fix_...

2019-05-20 21:40:28

阅读数 41

评论数 0

基于RNN的scope使用

代码 import tensorflow as tf class TrainConfig: batch_size = 20 time_steps = 20 input_size = 10 output_size = 2 cell_size = 11 ...

2019-05-20 20:52:02

阅读数 38

评论数 0

不同scope的命名方式比较

代码 import tensorflow as tf with tf.name_scope("a_name_scope"): initializer = tf.constant_initializer(value=1) var1 = tf.get_vari...

2019-05-20 20:51:21

阅读数 38

评论数 0

非监督学习的自编码器实例

代码 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # Import MNIST data from tensorflow.examples.tutorials.mnist import ...

2019-05-20 20:29:59

阅读数 37

评论数 0

基于LSTM的网络的波形预测回归

代码 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEPS = 20 BATCH_SIZE = 50 INPUT_SIZE = 1 OUTP...

2019-05-20 17:50:17

阅读数 39

评论数 0

LSTM神经网络实例

代码 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # set random seed for comparing the two result calculations ...

2019-05-20 16:13:59

阅读数 47

评论数 0

神经网络的保存与读取实例

代码 import tensorflow as tf import numpy as np # Save to file # remember to define the same dtype and shape when restore # W = tf.Variable([[1,2,3]...

2019-05-20 15:06:16

阅读数 37

评论数 0

简单的CNN架构

代码 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 data mnist = input_data.read_data_sets('MNIS...

2019-05-20 14:55:26

阅读数 38

评论数 0

Dropout解决OverFitting

代码 import tensorflow as tf from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.preprocessing...

2019-05-17 21:58:50

阅读数 472

评论数 0

基于Tensorflow的手写文字的识别

代码 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import numpy as np def add_layer(inputs, in_size, out_size, ...

2019-05-17 20:37:43

阅读数 59

评论数 0

tensorboard的可视化实例

代码 import tensorflow as tf import numpy as np def add_layer(inputs, in_size, out_size, activation_function=None): with tf.name_scope("lay...

2019-05-17 11:41:29

阅读数 46

评论数 0

TensorFlow之建造神经网络

代码 import tensorflow as tf import numpy as np def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.ran...

2019-05-10 11:39:48

阅读数 19

评论数 0

Tensorflow的Placeholder传入值

代码 import tensorflow as tf input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) output = tf.multiply(input1, input2) with tf....

2019-05-10 10:12:49

阅读数 10

评论数 0

TensorFlow的Variable变量应用

代码 import tensorflow as tf state = tf.Variable(0, name='counter') print(state.name) one = tf.constant(1) new_value = tf.add(state, one) update = ...

2019-05-10 10:00:20

阅读数 12

评论数 0

tensorflow的Session控制

代码 import tensorflow as tf matrix1 = tf.constant([[3, 3]]) matrix2 = tf.constant([[2], [2]]) product = tf.matmul(matrix1, ma...

2019-05-10 09:47:55

阅读数 11

评论数 0

Tensorflow线性回归实例

代码 import tensorflow as tf import numpy as np x_data = np.random.rand(100).astype(np.float32) y_data = x_data*0.5 + 0.7 Weights = tf.Variable(tf.r...

2019-05-10 09:20:34

阅读数 10

评论数 0

Convolutional LSTM Network: A Machine Learning Approach For Precipitation Nowcasting

Abstract 本文将降水量的预报作为一个时空序列预报问题,其输入和预报目标都是时空序列。通过将完全连通的LSTM(FC-LSTM)扩展为在输入到状态和状态到状态转换中都具有卷积结构,我们提出了卷积LSTM(ConvLSTM),并利用它建立了降水预报问题的端到端可训练模型。 Prelimina...

2019-05-08 20:13:24

阅读数 34

评论数 0

Sphere-Meshes for Real-Time Hand Modeling and Tracking

Absract 现代的手部实时跟踪系统依赖于区分和能量接近相结合的方法来实现手部的连续运动。生成方法需要指定几何模型。 本文提出了一种利用球面网格作为实时生成手跟踪的几何表示方法。我们得出了一个优化的非刚性变形的模板模型,以确定用户的不同姿势。这种优化可以联合捕获用户的静态和动态手部几何图形,...

2019-05-08 17:02:36

阅读数 20

评论数 0

Dual Attention Network for Scene Segmentation

Abstract 本文通过基于自注意机制的丰富上下文依赖关系的捕获来解决场景分割任务。与以往通过多尺度特征融合捕获上下文的工作不同,我们提出了一种双关注网络(DANET)来自适应地将局部特征与其全局依赖性集成。 我们在扩展的FCN之上附加了两种类型的注意模块,分别对空间维度和通道维度的语义依赖...

2019-05-08 15:27:06

阅读数 52

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭