这个题真是蛋疼。 自己推公式推了半年。 最后找了一个国家论文。 看了。 原来可以用一个公式就可以解决。
自己的知识面太窄了。 对于很多东西都不知道。 比如说 一个三角形的中线一定可以组成一个三角形(这个定理可以直接判断输入的三条线是否可以组成组成三角形)。
三条中线与面积的关系的公式 是由海伦公式推广得来的。 海伦公式是 : p = a+b+c ; s = sqrt(p(p-2a)(p-2b)(p-2c))/4;(其中abc是三角形三边长度)
另外 三条中线求面积的公式。 p = a+b+c ; s = sqrt(p(p-2a)(p-2b)(p-2c))/3; 这样就可以算出来了。
证明如下
另外 我又去查看了一下别人写的代码。 自己又深深感觉到自己知识面太窄。
斯特沃特定理 说的是 三边与中线的关系表达式。
就是这样 我的代码 如下(-1的时候要输出 -1.000)
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <string>
#include <map>
#include <vector>
#include <set>
#include <queue>
#include <stack>
#include <cctype>
using namespace std;
#define ll long long
typedef unsigned long long ull;
#define maxn 10010
#define INF 1<<30
struct Point{
double x,y;
Point(double x = 0, double y = 0):x(x),y(y) {}
};
typedef Point Vector ;
Vector operator + (Vector A, Vector B){ return Vector(A.x + B.x, A.y + B.y);}
Vector operator - (Vector A, Point B){return Vector(A.x - B.x, A.y - B.y);}
Vector operator * (Vector A, double p){return Vector(A.x * p, A.y * p);}
Vector operator / (Vector A, double p){return Vector(A.x / p, A.y / p);}
bool operator < (const Point & a, const Point & b){
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
const double eps = 1e-10;
int dcmp(double x){
if(fabs(x) < eps) return 0;
else return x < 0 ? -1 : 1;
}
bool operator == (const Point & a, const Point & b){
return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}
double Dot(Vector A, Vector B){ return A.x * B.x + A.y * B.y;} // 点积
double Length(Vector A) { return sqrt(Dot(A, A));} //向量长度
double Angle(Vector A, Vector B){ return acos(Dot(A, B)/Length(A)/Length(B));}
//夹角
double Cross(Vector A, Vector B){return A.x*B.y - A.y * B.x;} //叉积(面积两倍)
double Area2(Point A, Point B, Point C){return Cross(B-A,C-A);} // 面积两倍
//Vector Rotate(Vector A, double rad){return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad));}<span style="font-family: Arial, Helvetica, sans-serif;">// 旋转后的直线</span>
Vector Normal(Vector A){
double L = Length(A);
return Vector(-A.y/L, A.x/L);
}
Point GetLineIntersection(Point P, Point v, Point Q, Point w){ //求直线 pv 与qw的交点
Vector u = P-Q;
double t = Cross(w, u) / Cross(v, w);
return P+v*t;
}
double DistanceToline(Point P, Point A, Point B){ //点到直线的距离
Vector v1 = B - A,v2 = P - A;
return fabs(Cross(v1,v2))/Length(v1);
}
double DistanceTpsegment(Point P, Point A, Point B){ //点到线段的距离
if(A == B) return Length(P-A);
Vector v1 = B - A, v2 = P - A, v3 = P - B;
if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
else if(dcmp(Dot(v1,v3)) > 0) return Length(v3);
else return fabs(Cross(v1, v2)) / Length(v1);
}
Point GetLinePrijection(Point P, Point A, Point B){ // 点在直线上的投影
Vector v = B-A;
return A+v*(Dot(v, P-A)/Dot(v,v));
}
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2){ // 线段相交判定(不包括在端点处的情况)
double c1 = Cross(a2 - a1,b1-a1) ,c2 = Cross(a2 - a1,b2-a1),
c3 = Cross(b2 - b1, a1-b1), c4 = Cross(b2 - b1, a2 - b1);
return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
}
bool OnSegment(Point p, Point a1, Point a2){ //线段在端点处是否可能相交
return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0;
}
double ConvexPolygonArea(Point * p,int n){ // 多边形的有向面积
double area = 0;
for(int i = 1; i < n-1; i++)
area += Cross(p[i] - p[0],p[i+1] - p[0]);
return area/2;
}
double pi = acos(-1);
int main (){
double l1,l2,l3;
while(scanf("%lf%lf%lf",&l1,&l2,&l3) != EOF){
if(l1 <= 0 || l2 <= 0 || l3 <= 0)
printf("-1.000\n");
else if(l1 + l2 <= l3 || l2 + l3 <= l1 || l1 + l3 <= l2){
printf("-1.000\n");
}
else{
double l = l1 + l2 + l3;
double s = sqrt(l*(l-2*l1)*(l-2*l2)*(l-2*l3))/3.0;
printf("%.3lf\n",s);
}
}
return 0;
}