几种常见的抛硬币问题模式,见博客地址 http://it.taocms.org/07/8360.htm
对于第一种较为简单的模式,可以用假设期望的形式求问题出现某种情况的期望。
问题如下:
1、平均需要抛掷多少次硬币,才会首次出现连续的两个正面?
问题在于首次出现两个连续正面的概率求解很繁琐,而通过假设期望可以轻松得到答案。
首先假设期望为E
在抛之前的时候,我们有期望E,表明我们期望在第E次能够获得两正面的情况,那么我们开始抛第一次。
当我们抛出的时候,我们就能得到两种答案。
1.1 出现反面,因为出现反面对于我们出现两次正面毫无帮助,可以认为此时,我们的后续期望仍是E,即总的期望次数变为E+1,同时对应的概率是1/2;
1.2出现反面,这是要抛第二次硬币。
1.2.1第二次出现正面,这个概率为1/2*1/2;此时,出现了连续两个正面,这时候的期望就是2。
1.2.2第二次出现反面,同1.1的情况,这时候我们需要重新抛硬币,总期望变为E+2;概率为1/2*1/2;
由上可知,E=1/2*(E+1)+1/2*[1/2*2+1/2*(E+2)]
解得 E=6;
第二个问题的解法就很有意思了。把题目拓展,不是说“连续两个正面”,而是“连续n个正面”呢?
对于这个问题,Matrix67有非常有趣的解答《用数学解赌博问题不稀奇,用赌博解数学问题才牛B》:
假设有一个赌场,每一次赌博,都会额外来一个人,每个人只带一块钱,并且一定会把所有钱押正面,如果赢则奖励双倍,如果输将所有钱收回,就是说,对于台上的每一个人,如果本次出现了反面,就会输掉所有的钱,那么开始赌博。
首先,庄家订了规矩,即当有一个人的钱达到了2^n数目,那么赌博停止.
当赌博停止时,恰好是第一次出现N个连续正面的情况,而此时统计参与过赌博的人就是期望值,我们可以知道,最后有钱的赌客是最后N次来的人,持有钱金额为2,4,8…… ,2^N.剩下需要证明的便转化为赌场的收支平衡问题,及赌场支出和收益的平衡问题.
假设赌场可以支出一些盈利外的金钱,由于每次赌博,出现正反面的概率相同,假设赌场某一次下赚的钱为S,玩家总金钱为D,则下一次赌博,有庄家返给玩家D元和庄家收D元两种可能性,每种可能性相同,从期望上来讲,庄家赚钱数目为 1/2*D-1/2*D=0;而从庄家刚开始即赌博次数n=1时,庄家赚钱为0,通过归纳法知,庄家对于经营的期望是盈利为0;
因此,可以知道,当出现连续N次正面时,商家收支期望为0;那么最后N名玩家拥有的钱就是所有玩家拥有的钱,即期望的赌博(抛硬币)次数,为2+4+8+……+2^N,求和为2^(n+1)-2;