洛谷P2802 回家

P2802 回家

原题连接:https://www.luogu.com.cn/problem/P2802

题目描述:

小 H 在一个划分成了 n \times mn×m 个方格的长方形封锁线上。 每次他能向上下左右四个方向移动一格(当然小 H 不可以静止不动), 但不能离开封锁线,否则就被打死了。 刚开始时他有满血 66 点,每移动一格他要消耗 11 点血量。一旦小 H 的血量降到 00, 他将死去。 他可以沿路通过拾取鼠标(什么鬼。。。)来补满血量。只要他走到有鼠标的格子,他不需要任何时间即可拾取。格子上的鼠标可以瞬间补满,所以每次经过这个格子都有鼠标。就算到了某个有鼠标的格子才死去, 他也不能通过拾取鼠标补满 HP。 即使在家门口死去, 他也不能算完成任务回到家中。

地图上有五种格子:

0:障碍物。

1:空地, 小 H 可以自由行走。

2:小 H 出发点, 也是一片空地。

3:小 H 的家。

4:有鼠标在上面的空地。

小 H 能否安全回家?如果能, 最短需要多长时间呢?

输入格式:

第一行两个整数 n,mn,m, 表示地图的大小为 n \times mn×m。

下面 nn 行, 每行 mm 个数字来描述地图。

输出格式:

一行, 若小 H 不能回家, 输出 -1,否则输出他回家所需最短时间。

输入输出样例:

输入:
3 3
2 1 1
1 1 0
1 1 3
输出:
4

说明/提示:

对于所有数据,1 \le n,m \le 91≤n,m≤9。

2021.9.2 增添一组 hack 数据 by @囧仙

自我理解:

起初有6滴血,每走一步就会减1滴,(当减道还有1滴的时候,就不会在继续走了,因为当血量为0的时候就已经死了,不代表走到);因为有鼠标,可以使血量立即回满,所以,每个点又可能遍历好几遍,那么就有可能会重复走,那么如何判重,怎么确定最优解呢?而此题又难以直接用是否到过一点判重,就要使用贪心的思维,我们可以将vis数组从bool型转为int型,存储目前到达它的路径中,到达它时血量最多的一次的血量。因为是bfs,所以简单的证明可以知道,如果一条路径到达一个已经到达过的点,且血量还小于等于visit时,那么即使完成了任务,其步数也不会时最优的。反之,如果到达一个点,其血量值可以更大,那么这就一种可能的路径,并不是重复到达。这样,就可以既保证了答案得正确性,又保证了不会TLE。

代码:

#include <bits/stdc++.h>
using namespace std;

typedef pair<int, int> PII;

const int N = 10;

int n, m, x, y;
int a, b;
int d[N][N], v[N][N], g[N][N]; // g是各个点,v是血量,d是这个点离出发地的最短距离
bool flag = false; // 判断是否到达家

void bfs()
{
    queue<PII> q;
    memset(d, -1, sizeof d);
    d[x][y] = 0;
    v[x][y] = 6;
    q.push({x, y});
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
    while (q.size() && !flag)
    {
        auto t = q.front();
        q.pop();
        if (v[t.first][t.second] == 1) continue; // 如果血量已经是还有1滴了,就代表不能在走了
        for (int i = 0; i < 4 ; i ++ )
        {
            int tx = dx[i] + t.first, ty = dy[i] + t.second;
            if (tx > n || tx < 1 || ty > m || ty < 1 || !g[tx][ty]) continue;
            if (v[tx][ty] < v[t.first][t.second] - 1) // 贪心思想
            {
                v[tx][ty] = v[t.first][t.second] - 1;
                d[tx][ty] = d[t.first][t.second] + 1;
                if (g[tx][ty] == 4) v[tx][ty] = 6;
                if (g[tx][ty] == 3) flag = true;
                q.push({tx, ty});
            }
        }
    }
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n ; i ++ )
    {
        for (int j = 1; j <= m ; j ++ )
        {
            scanf("%d", &g[i][j]);
            if (g[i][j] == 2) x = i, y = j;
            if (g[i][j] == 3) a = i, b = j;
        }
    }
    
    bfs();
    
    if (flag) cout << d[a][b] << endl;
    else cout << "-1" << endl;
    
    return 0;
}

再来一份参考的代码:


#include <bits/stdc++.h>
using namespace std;

typedef pair<int, int> PII;

const int N = 10;

int n, m, x, y;
int a, b;
int d[N][N], g[N][N];
bool tf = false;
int vis[N][N];

struct node
{
    int x, y, bs, hp;
}fr;

void bfs()
{
    queue<node> q;
    memset(d, -1, sizeof d);
    d[x][y] = 0;
    q.push({x, y, 0, 6});
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
    vis[x][y] = 6;
    while (q.size() && !tf)
    {
        auto t = q.front();
        q.pop();
        if (t.hp == 1) continue;
        for (int i = 0; i < 4 && !tf ; i ++ )
        {
            int tx = dx[i] + t.x, ty = dy[i] + t.y;
            if (tx > n || tx < 1 || ty > m || ty < 1 || !g[tx][ty]) continue;
            if (vis[tx][ty] < t.hp - 1)
            {
                fr.x = tx;
                fr.y = ty;
                fr.bs = t.bs + 1;
                fr.hp = g[fr.x][fr.y] == 4 ? 6 : t.hp - 1;
                vis[fr.x][fr.y] = t.hp - 1;
                if (g[fr.x][fr.y] == 3) tf = true;
                q.push(fr);
            }
        }
    }
}

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n ; i ++ )
    {
        for (int j = 1; j <= m ; j ++ )
        {
            cin >> g[i][j];
            if (g[i][j] == 2) x = i, y = j;
            if (g[i][j] == 3) a = i, b = j;
        }
    }
    
    bfs();
    if (tf) cout << fr.bs << endl;
    else cout <<"-1" << endl;
    
    return 0;
}

太菜了,慢慢肖习!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值