P2802 回家
原题连接:https://www.luogu.com.cn/problem/P2802
题目描述:
小 H 在一个划分成了 n \times mn×m 个方格的长方形封锁线上。 每次他能向上下左右四个方向移动一格(当然小 H 不可以静止不动), 但不能离开封锁线,否则就被打死了。 刚开始时他有满血 66 点,每移动一格他要消耗 11 点血量。一旦小 H 的血量降到 00, 他将死去。 他可以沿路通过拾取鼠标(什么鬼。。。)来补满血量。只要他走到有鼠标的格子,他不需要任何时间即可拾取。格子上的鼠标可以瞬间补满,所以每次经过这个格子都有鼠标。就算到了某个有鼠标的格子才死去, 他也不能通过拾取鼠标补满 HP。 即使在家门口死去, 他也不能算完成任务回到家中。
地图上有五种格子:
0:障碍物。
1:空地, 小 H 可以自由行走。
2:小 H 出发点, 也是一片空地。
3:小 H 的家。
4:有鼠标在上面的空地。
小 H 能否安全回家?如果能, 最短需要多长时间呢?
输入格式:
第一行两个整数 n,mn,m, 表示地图的大小为 n \times mn×m。
下面 nn 行, 每行 mm 个数字来描述地图。
输出格式:
一行, 若小 H 不能回家, 输出 -1,否则输出他回家所需最短时间。
输入输出样例:
输入:
3 3
2 1 1
1 1 0
1 1 3
输出:
4
说明/提示:
对于所有数据,1 \le n,m \le 91≤n,m≤9。
2021.9.2 增添一组 hack 数据 by @囧仙
自我理解:
起初有6滴血,每走一步就会减1滴,(当减道还有1滴的时候,就不会在继续走了,因为当血量为0的时候就已经死了,不代表走到);因为有鼠标,可以使血量立即回满,所以,每个点又可能遍历好几遍,那么就有可能会重复走,那么如何判重,怎么确定最优解呢?而此题又难以直接用是否到过一点判重,就要使用贪心的思维,我们可以将vis数组从bool型转为int型,存储目前到达它的路径中,到达它时血量最多的一次的血量。因为是bfs,所以简单的证明可以知道,如果一条路径到达一个已经到达过的点,且血量还小于等于visit时,那么即使完成了任务,其步数也不会时最优的。反之,如果到达一个点,其血量值可以更大,那么这就一种可能的路径,并不是重复到达。这样,就可以既保证了答案得正确性,又保证了不会TLE。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int N = 10;
int n, m, x, y;
int a, b;
int d[N][N], v[N][N], g[N][N]; // g是各个点,v是血量,d是这个点离出发地的最短距离
bool flag = false; // 判断是否到达家
void bfs()
{
queue<PII> q;
memset(d, -1, sizeof d);
d[x][y] = 0;
v[x][y] = 6;
q.push({x, y});
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
while (q.size() && !flag)
{
auto t = q.front();
q.pop();
if (v[t.first][t.second] == 1) continue; // 如果血量已经是还有1滴了,就代表不能在走了
for (int i = 0; i < 4 ; i ++ )
{
int tx = dx[i] + t.first, ty = dy[i] + t.second;
if (tx > n || tx < 1 || ty > m || ty < 1 || !g[tx][ty]) continue;
if (v[tx][ty] < v[t.first][t.second] - 1) // 贪心思想
{
v[tx][ty] = v[t.first][t.second] - 1;
d[tx][ty] = d[t.first][t.second] + 1;
if (g[tx][ty] == 4) v[tx][ty] = 6;
if (g[tx][ty] == 3) flag = true;
q.push({tx, ty});
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n ; i ++ )
{
for (int j = 1; j <= m ; j ++ )
{
scanf("%d", &g[i][j]);
if (g[i][j] == 2) x = i, y = j;
if (g[i][j] == 3) a = i, b = j;
}
}
bfs();
if (flag) cout << d[a][b] << endl;
else cout << "-1" << endl;
return 0;
}
再来一份参考的代码:
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int N = 10;
int n, m, x, y;
int a, b;
int d[N][N], g[N][N];
bool tf = false;
int vis[N][N];
struct node
{
int x, y, bs, hp;
}fr;
void bfs()
{
queue<node> q;
memset(d, -1, sizeof d);
d[x][y] = 0;
q.push({x, y, 0, 6});
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
vis[x][y] = 6;
while (q.size() && !tf)
{
auto t = q.front();
q.pop();
if (t.hp == 1) continue;
for (int i = 0; i < 4 && !tf ; i ++ )
{
int tx = dx[i] + t.x, ty = dy[i] + t.y;
if (tx > n || tx < 1 || ty > m || ty < 1 || !g[tx][ty]) continue;
if (vis[tx][ty] < t.hp - 1)
{
fr.x = tx;
fr.y = ty;
fr.bs = t.bs + 1;
fr.hp = g[fr.x][fr.y] == 4 ? 6 : t.hp - 1;
vis[fr.x][fr.y] = t.hp - 1;
if (g[fr.x][fr.y] == 3) tf = true;
q.push(fr);
}
}
}
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n ; i ++ )
{
for (int j = 1; j <= m ; j ++ )
{
cin >> g[i][j];
if (g[i][j] == 2) x = i, y = j;
if (g[i][j] == 3) a = i, b = j;
}
}
bfs();
if (tf) cout << fr.bs << endl;
else cout <<"-1" << endl;
return 0;
}
太菜了,慢慢肖习!