HDU 1317 POJ 1932 XYZZY 正负环+最长路

转载请注明本文链接


这题if的问题、输入的问题让我作死很多次…感谢磊磊师傅的悉心教导(虽然他很早就睡觉去了……)。写写思路和注意点以及收获吧……


题意:有n个房间(n<=100),每个房间有一个点权(第1号房间和第n号房间权值均为0),到达该房间时会自动获得该点权(可能为负权)。给出一些无向边。有一个人,初始有能量值100,初始位置是第1号房间,要走到第n号房间,且路途中不得使身上能量值小于或等于0。能到达第n个房间就算赢,问能否赢。


思路:

1.首先可以发现,只要知道到第n个房间时最大可以获得多少能量值(当然必须保证中途都大于0),就能知道能否赢。

2.考虑到负环情况,跑SPFA的时候最长路负环是不会去循环的,所以负环其实可以不用考虑。

3.考虑到正环情况,只要能到达正环(即SPFA处理过程中接触到正环中的点),并且正环能到达终点,就一定能赢。

4.SPFA最长路松弛操作只要把松弛条件里的大于号小于号什么的反一下就可以了。

5.由于SPFA入队的点一定是能够由源点到达的点,而如果一个点进队次数大于等于n就说明它在环中(事实上由于最长路中负环不会循环所以这里一定是正环),那么这里只要能从该点到达终点(Floyd判断),那么就一定能赢;反之如果不能到达终点就一定会输(因为松弛次数大于或等于n还没有结束则说明最长路不存在)。

6.点权的写法,d数组的含义是由源点s到当前点u(包含u)的路径上的点权之和,所以初始化d[s]=100.

7.SPFA中松弛要求原图的连通情况,而不能用Floyd出来的结果。

8.注意松弛条件中本题要求中途都不能<=0因此松弛优化要满足优化值>0,于是要加个d[u]+E[v]>0。

9.注意最后判断一下到达第n号房间时的能量值是否>0,这个数值即为到达第n个房间时最大可以获得多少能量值。

10.程序中map数组用来存放原图,用来SPFA中的松弛条件;reach数组用来判断u->v的连通性。

11.注意Floyd是这样写的reach[i][j]=reach[i][j] || (reach[i][k] && reach[k][j]);

12.注意输入中可到达的房间编号是以1开始的,所以程序中想从0开始编号要将输入数值减1(作死无数次……)。

13.暂时没再想到什么了……


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>

using namespace std;

const int MAXV=110;
const int inf=-0x3f3f3f3f;

int n,m;
int E[MAXV],d[MAXV],num[MAXV];
bool reach[MAXV][MAXV];
bool map[MAXV][MAXV];

void init()
{
    memset(reach,false,sizeof(reach));
    memset(map,false,sizeof(map));
    fill(d,d+MAXV,inf);
    memset(num,0,sizeof(num));
}

void Floyd()
{
    for(int k=0;k<n;k++)
    {
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                reach[i][j]=reach[i][j] || (reach[i][k] && reach[k][j]);//作死很多次……
            }
        }
    }
}

bool SPFA(int s,int d[])
{
    queue<int> Q;
    Q.push(s);
    d[s]=100;
    while(!Q.empty())
    {
        int u=Q.front();
        Q.pop();
        num[u]++;

        if(num[u]>=n) return reach[u][n-1];//作死很多次……

        for(int v=0;v<n;v++)
        {
            if(map[u][v]==true && d[u]+E[v]>d[v] && d[u]+E[v]>0)//map数组而不是reach数组
            {
                d[v]=d[u]+E[v];
                Q.push(v);
            }
        }
    }
    return d[n-1]>0;//别忘了判断
}

int main()
{
    int v;
    while(scanf("%d",&n),n+1)
    {
        init();
        for(int i=0;i<n;i++)
        {
            scanf("%d%d",&E[i],&m);
            for(int j=0;j<m;j++)
            {
                scanf("%d",&v);
                v--;//作死无数次……
                map[i][v]=true;
                reach[i][v]=true;
            }
        }
        Floyd();
        if(reach[0][n-1]==false) printf("hopeless\n");
        else
        {
            if(SPFA(0,d)) printf("winnable\n");
            else printf("hopeless\n");
        }
    }
    return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值