

📢 『State of AI 2022』人工智能现状汇总与发展预测
https://www.stateof.ai/2022-report-launch.html
这是一份发布于2022年10月的报告,作者 Nathan Benaich 和 Ian Hogarth 从 Research、Industry、Politics、Safety 等四个方面,对2022年的发展做了汇总梳理,并对新一年的发展进行了预测。完整报告 114 页,其中核心要点如下,具体内容见下图:
大厂实验室“闭关锁国”,但是新的独立研究实验室正在迅速开源。虽然 AI 研究呈现集中趋势,但计算与访问成本的降低催生了走在研究最前沿的小型实验室(如 Stability.AI 和 Midjourney)。
人工智能研究越来越关注安全领域。安全研究人员在大型 AI 实验室的安全研究人员,由去年的不到100人增长为300人,这也有望提升安全学者的认可度。
中美人工智能研究差距继续扩大,自2010年以来,中国机构发表的论文数量是美国机构的4.5倍,明显超过美国、印度、英国和德国的总和。
人工智能驱动的科学研究继续取得突破,但数据泄漏等重大方法错误需要进一步调查,否则会导致 AI 危机的日益严重。

作者也对未来12月的技术发展做了预测,包含知名实验室的动向、技术突破与商业机会。要点如下,详细内容见下图:
Research方面:DeepMind 训练的多模态 RL 模型参数将达到 10B(比 Gato 大一个数量级);SOTA LM 的训练数据点将比 Chinchilla 多出 10 倍,以证明数据集和参数的扩展性;AI 初创公司(如OpenAI)与内容平台(如Reddit)进行合作,在其内容语料库上进行训练。
Industry方面:音频生成工具将吸引了超过10万名开发者;NVIDIA 将与 AGI 公司进行战略合作,GAFAM 向 AGI/AI 公司投资1亿美元以上;半导体初创公司始终难以撼动英伟达主导地位,一家备受瞩目的初创公司被关闭或以低于其最近估值的50%被收购。
Safety方面:超过1亿美元的资金投入到专门的人工智能安全机构。


ShowMeAI 🎡AI应用与工具大全 页面,汇总了100+人工智能工具,包括个人、企业、行业、科研等4大应用场景,智能家居、增强现实AR、运动健康、聊天机器人、广告营销、教育、农业、无人机、自动驾驶、文本生成、图像生成等领域!是AI开发者和数字行业工作者的百宝箱!如有遗漏或推荐,欢迎联络留言!
🎡 『Daft Art』一键生成音乐专辑封面!但是小贵
Daft 是一个面向音乐家、制作人、乐队、播客和艺术家的平台,允许他们使用 AI 创建专辑和曲目封面(每件 29 美元)。Daft 的使用过程分为三步:首先注册并付费,然后提交描述提示词,等待几分钟即可获得 3000x3000 像素 JPG 格式的高清图。

🎡 『Endel』今晚就睡这里了!AI生成助眠音乐
Endel Pacific 是一项专利技术,可以根据设备和传感器输入的时间、天气、心率和位置信息等,了解用户环境并创建个性化背景音乐,以快速减轻压力、改善睡眠、提高工作生产力。
Endel Pacific 可以集成到车载系统中帮助驾驶员保持专注或放松;可以与耳机、手机、电视等消费电子产品集成,实现设备间无缝切换;也可以用于运动、健康、工作、教育等环境中。从产品页面可以看到,产品已经与多家公司达成了合作。


🔥 『Meta · Data2vec 2.0』视觉、语音和文本的高效自监督学习
https://ai.facebook.com/blog/ai-self-supervised-learning-data2vec/
自监督学习是让机器仅仅通过观察世界来学习图像、语音和文本的结构。这一领域在语音(如 wav2vec 2.0),计算机视觉(如 MAE)和自然语言处理(如 Bert)等方面取得了许多突破。但是训练大模型需要许多 GPU,因此对计算的要求很高。

一年前,Meta AI 推出了第一个高性能自监督系统 Data2vec,以相同的方式学习语音,视觉和文本等三种不同的模式,将文本理解方面的研究进展应用于图像分割或语音翻译任务变得更加容易。近期 Meta AI 发布的新算法 Data2vec 2.0 效率更高,与最新的计算机视觉自监督算法精度相同,但速度提高了 16 倍。
Data2vec 2.0 与其前身相似,预测数据的上下文表示(神经网络的层),而不是图像的像素或者文本的单词/语音。与大多数其他算法不同,这些目标表示是 contextualized(语境化的),考虑了整个训练示例,因此带来了更丰富的学习任务,并使得 Data2vec 2.0 比其他算法学习得更快。

作者团队通过“为特定训练示例构建目标表示并将其重用于掩码版本”、“使用更高效的解码器模型”几种方式提高了 Data2vec 2.0 算法的效率,并与 Data2vec 算法进行了效率比较。
- 在标准 ImageNet-1K 图像分类基准上,Data2vec 2.0 比 MAE 快 16 倍,同时保持相同的精度。
- 在 LibriSpeech 语音识别基准测试上,Data2vec 2.0 比 wav2vec 2.0 快 11 倍,在准确性方面不相上下。
- 团队也在广泛使用的 NLP 通用语言理解评估基准上进行了测试。结果表明,Data2vec 2.0 与 RoBERTa 准确率相同。


🚧 『ThoughtPartner for Obsidian』Obsidian 的 AI 助手
https://github.com/humanloop/obsidian-thought-partner
Obsidian 是一个强大的、可扩展的知识库,基于本地的纯文本文件夹构建而成。Obsidian Thought Partner 插件将 GPT-3 的强大功能带入了Obsidian 软件——生成文本、辅助思考并成为更好的创作者。

🚧 『Van Gogh diffusion』基于电影《梵高》画面微调的 Stable Diffusion 模型
https://huggingface.co/dallinmackay/Van-Gogh-diffusion
这是一个经过微调的 Stable Diffusion 模型(基于 v1.5),根据电影 Loving Vincent《梵高》的屏幕截图进行训练而得。

🚧 『winkNLP』对开发者友好的 NLP 库(JavaScript)
https://github.com/winkjs/wink-nlp
WinkNLP 是一个用于自然语言处理 (NLP) 的 JavaScript 库,建立在一个没有外部依赖的精简代码库之上,具有完整的 Typescript 支持,可在 Node.js 和浏览器上运行。WinkNLP 针对性能和准确性进行了优化,使得开发 NLP 应用程序的速度更快更高效,接近 100% 的测试覆盖率也使其成为构建生产级系统的理想工具。
网站给出了一些使用示例:维基百科时间轴、上下文感知词云、视觉情感分析、可视化文档中的句子/日期/时间、浏览器搜索等。

🚧 『AutoProfiler』Jupyter 侧边栏的自动分析工具
https://github.com/cmudig/AutoProfiler
Autoprofiler 的启动按钮位于 Jupyter 侧边栏,在每次执行后可以将 Pandas Dataframes 自动可视化,便于快捷地选择图表类型并于数据交互。

🚧 『Hyperbox』启动 AutoML 项目的可扩展的模板
https://github.com/marsggbo/hyperbox
HyperBox 是一个 AutoML 框架工具包, 帮助用户设计神经网络架构搜索算法,是一款轻量级库,易于使用,便于扩展。

◉ 点击 👀日报合辑,公众号内订阅话题 #ShowMeAI资讯日报,可接收每日最新推送。
◉ 点击 🎡AI应用与工具大全,体验100+前沿AI产品带来的效率飞跃。
◉ 公众号 🔔ShowMeAI研究中心 回复关键字 日报,免费获取独家AI发展趋势报告、原创AI专题资料合辑,一览AI技术发展前沿,捕捉有价值的业务应用案例!