
👀日报&周刊合集 | 🎡生产力工具与行业应用大全 | 🧡 点赞关注评论拜托啦!
🉑 马斯克宣布本周开源 xAI 大模型 Grok

几个小时前,Elon Musk 又开始整活儿,宣布xAI 公司旗下的大模型 Grok 将于本周开源。然后果不其然,又轰炸了所有AI社区!推文评论区也开始陆续出现各种梗图~

Grok 大模型于2023年11月首次发布,使用了社交媒体平台X (Twitter) 的语料,聊天风格是幽默且灵活开放。
根据 ARK Investment 数据,Grok-1 的实际表现已经超越了 OpenAI GPT-3.5 (非常期待开源后的全方位实测了 👀
🉑 一份超实用的 LLM 高效提示词手册:真 · 最常用的13条提示词策略

一般来说,日常的提示词不需要很复杂、甚至不必要结构化,用一些简单技巧完成搜索或生成目标就OK。所以,找到了这篇超级「接地气」的提示词手册!
只有最简单、最高频的13条提示词策略,而且给出了非常详细的示例说明 👆 如上图!!日报对策略要点进行了整理,快快收藏或者打印放在手边,写提示词时就瞄一眼~
-
明确和具体 (Be Clear and Specific):使用简单直接的语言,避免行业术语和模糊表达
-
告诉AI做什么和不做什么 (Tell It What To Do And What Not To Do):明确指示AI包含或排除的内容,以及期望的语气和细节水平
-
使用上下文 (Use Context):提供额外的细节,如查询背后的原因、请求的时机等
-
提供输出格式的详细信息 (Provide Details of How the Output Should Appear):指定期望的输出结构,如项目符号列表、编号列表或简洁段落
-
给出示例 (Give Examples):通过提供示例,引导AI模仿你想要的格式、风格或语气
-
使用语气 (Use Tones):在提示中设定期望的语气,AI会相应调整其语言风格
-
定义受众 (Define The Audience):考虑你的目标受众,以及他们可能的文化背景和偏好
-
指出错误 (Point Out Mistakes):当AI犯错时,及时纠正,以避免错误在后续生成中重复
-
迭代提示 (Iterative Prompting):通过逐步调整提示,与AI进行创造性的协作,以提高理解
-
角色创建 (Persona Creation):为AI创建一个角色或人格,使其在特定上下文中模仿人类沟通方式
-
认知验证器 (Cognitive Verifiers):鼓励AI提出额外问题以获得更好的清晰度或上下文
-
思维链(CoT)提示 (Chain of Thought Prompting):提供一系列“思维节点”,引导AI在生成过程中的每个阶段评估其推理
-
提示模板和框架 (Prompt Templates and Frameworks):创建一套模板,以加速常规任务的AI互动过程
👀 IBM最新报告:GenAI 时代,CEO 们的认知纲领 & 行动指南

ShowMeAI知识星球资源编码:R237
这是 IBM 2024年新鲜出炉的一份报告 「The CEO’s Guide to Generative AI: What you need to know and do to win with transformative technology」,翻译成中文就是《CEO们的生成式AI指南:掌握变革技术的关键知识与行动策略》。
报告主要面向企业 CEO (或者管理层),讨论了生成式人工智能 (Generative AI) 时代企业管理面临的诸多挑战,以及作为 CEO 具体应该如何应对。报告视野很开阔,而且给出了相对具体的落地执行策略,非常不错~
时代洪流滚滚向前,员工直面 AI 挑战和焦虑的同时,企业同样处在生死关口。人才、客户、组织、技术、数据、生态、供应链、营销、网络安全,所有这些都将被 GenAI 改写,企业管理者们要尽快筹谋起来了 💪
🔔 第一部分:AI赋能的人 (AI-enabled people)
第1章:人才与技能 (Talent and Skills):生成式人工智能正在重塑工作方式和技能需求。组织需重视人才,更新人才战略,提升创造力,改善员工体验,引领组织变革,转变人力资源职能,提供技能培训,展现领导力对变革的支持,以及培育鼓励创新的企业文化。
第2章:客户服务 (Customer Service):生成式AI正将客户服务转变为价值创造者,通过结合AI与人工代理提升服务效率。组织需利用AI优化客户互动,收集数据以洞察客户需求,管理风险,进行AI实验,投资技术以提升客户满意度,并通过创新提升服务质量。
第3章:客户与员工体验 (Customer and Employee Experience):生成式AI提升了客户和员工体验,通过个性化服务建立信任,革新员工工作方式,应用设计思维,结合数据与体验,考虑伦理问题,确保员工参与,以及融合技术与设计创新。
🔔 第二部分:AI驱动的数据和技术 (AI-powered data and technology)
第4章:平台、数据和治理 (Platforms, Data, and Governance):生成式AI在构建业务平台、数据管理和AI治理中扮演关键角色。组织需建立现代IT架构,实施全面治理,培养治理团队,确保治理的端到端实施,以及领导AI和数据治理。
第5章:开放创新和生态系统 (Open Innovation and Ecosystems):在生成式AI的推动下,开放创新和生态系统合作成为组织发展的关键。组织需重新定义创新,利用生态系统资源,探索新模式,共享数据和技能,选择合适的合作伙伴,实施治理,克服创新挑战,以及扩展生态系统影响力。
第6章:应用现代化 (Application Modernization):生成式AI助力应用现代化,提升业务敏捷性和收入。组织需更新系统,利用AI提高效率,解决技术债务,整合IT与业务,优化IT项目优先级,以及管理技术支出。
第7章:负责任的AI与伦理 (Responsible AI and Ethics):组织需确保生成式AI的伦理使用,实施透明度和问责制,保护数据隐私,减少偏见,准备应对监管,建立伦理团队,融入企业文化,以及整合伦理与战略。
第8章:技术支出 (Tech Spend):组织需有效管理和优化技术支出。CEO们需评估IT预算,确定投资优先级,进行成本效益分析,合理分配资源,管理风险,采用FinOps实践,进行战略性投资,以及考虑治理和合规性。
🔔 第三部分:AI驱动的运营 (AI-fueled operations)
第9章:供应链 (Supply Chain):生成式AI提升供应链效率和创新能力。组织需自动化流程,利用实时数据和预测分析,数字化供应链,提高透明度和协作,管理风险,投资AI技术,以及培养供应链人才。
第10章:营销 (Marketing):生成式AI正在改变营销策略和客户互动。营销团队需利用AI加速内容创作,实现个性化营销,实时分析客户数据,优化客户旅程,整合营销技术,管理风险,并对团队进行AI培训。
第11章:网络安全 (Cybersecurity):生成式AI在加强网络安全方面发挥重要作用。组织需应对新威胁,利用AI作为防御工具,保护数据,投资AI安全,转变安全团队角色,制定AI安全策略,考虑合规性和伦理,以及与合作伙伴共同提升安全水平。
第12章:可持续性 (Sustainability):生成式AI支持组织实现可持续性目标。组织需结合AI与可持续性,利用数据洞察,提高资源效率,与合作伙伴合作,进行可持续性报告,整合可持续性战略,考虑技术环境影响,以及教育员工参与可持续性行动。
报告最后的部分,有一点 IBM 自夸与推广的痕迹,忽略就好~
🉑 万字指南:2024 SaaS 出海与全球化手册

2023年,生成式AI (AIGC) 领域最常听到的一个词就是「出海」,而且很多产品 (如 Heygen、Monica ) 爆火之后才知道原来是出自中国团队之手。
所以,出海这件事有哪些共识和新共识?团队优劣势各有哪些 & 应该如何扬长避短?出海成功的团队总结了哪些宝贵的经验?这篇手册总结得很完整:
有什么是不变的?
-
AI与高质量发展:海外市场对AI技术持开放态度,但更倾向于支持那些追求高质量和可持续发展的公司
-
市场选择:美国和日本因其市场规模和成熟度,成为SaaS公司出海的首选目的地
-
创始人角色:创始人亲自参与市场调研和客户交流是成功出海的关键
-
本地化策略:利用当地生态资源,如合作伙伴和行业组织,是实现产品本地化和市场适应的重要途径
有什么超过预期的?
-
AI红利:AI技术的持续热度为初创公司提供了超越竞争对手的机会
-
美国软件生态:美国软件市场呈现出多样化和层次丰富的特点,包括自给自足的「bootstrapper」和独立开发者
-
日本市场:尽管日本市场以其保守著称,但对AI技术的需求迅速增长,显示出对新技术的渴望
我们做全球化有什么优势?
-
工程师红利:中国的工程师资源为SaaS公司提供了竞争优势,但需要在正确的市场定位下才能发挥
-
市场多样性:出海不仅仅是进入一个新的市场,而是需要考虑多种语言和地域因素;如果能在日本或亚洲打开市场,能够调动的当地资源与凸显的优势会更多
如何扬长避短?
-
理解用户需求:创始人需要深入理解海外用户的需求,以缩小认知差距
-
供应链优势:利用全球软件供应链体系,加速产品开发和市场适应
-
社交媒体推广:重视社交媒体在品牌形象建设和用户获取中的作用
-
长期投资:坚持长期有益的策略,即使短期内可能看不到明显效果
实践出真知 (分享)
-
Monica.im:分享了产品推广和用户反馈的经验,强调选择合适的发布时间和拉票策略
-
HashMatrix:提供了社交媒体推广的实操手册,强调明确推广目标和制定合理策略
-
ExponentialX:分享了在产品市场契合(PMF)后如何通过精细化营销延续增长势能
-
Notta.ai:分享了在日本市场从模仿到差异化、从个人用户到企业客户的转变过程中的经验和教训 ⋙ 阅读原文
🉑 LLM 应用开发实践笔记:对新手超友好的中文学习手册

这是一个覆盖比较完整的 LLM 实践笔记,作者以学习者和实践摸索者的视角,记录总结了核心经验、方法、资源,而且还附上了相关代码进行说明展示,对新手来说超级友好!!
以下是这份笔记当前的主要内容,作者还在更新中,可以看到有很多新的专题陆续加入中 ( ̄︶ ̄*))
大语言模型概述
大语言模型概况
你好, ChatGPT
OpenAI 文档解读
动手实现聊天机器人
基于 OpenAI API 搭建一个端到端问答系统
LLM 安全专题
LangChain入门
LangChain介绍
LangChain模块学习
LangChain之Chains模块
LangChain之Agents模块
LangChain之Callback模块
Embedding嵌入
动手实现文档问答机器人
LlamaIndex 概述
LlamaIndex介绍
LlamaIndex索引
动手实现企业知识库
HuggingGPT 实现
HuggingFace 介绍
transformers 库基础组件
多模态任务设计
动手实现 HuggingGPT
LLMOps 专题
LLMOps 介绍
Model 模型层
Prompt 提示层
狭义LLMOps
Agent 专题
Agent 介绍
Agent 项目跟踪
Multi-Agent 框架
RAG专题
数据索引环节
检索环节
生成环节
LLM 应用评估与测试
如何评估一个大语言模型
基于大模型的 Agent 进行测试评估
RAG 系统效果评估
国内模型厂商 API 解读
六家大模型能力比较
MiniMax 大模型开发
智谱AI大模型开发
MoonShot 大模型开发
感谢贡献一手资讯、资料与使用体验的 ShowMeAI 社区同学们!

◉ 点击 👀日报&周刊合集,订阅话题 #ShowMeAI日报,一览AI领域发展前沿,抓住最新发展机会!
◉ 点击 🎡生产力工具与行业应用大全,一起在信息浪潮里扑腾起来吧!