
👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦!
1. 一年前,Latent Space 果断「预言」AI Engineer 正在崛起

The Rise of the AI Engineer → https://www.latent.space/p/ai-engineer
Latent Space 是AI领域最有影响力的播客频道之一,主持人是 Shawn Wang,也就是大家熟知的 Swyx。
一年前,也就是2023年6月30日,Swyx 撰文「The Rise of the AI Engineer (人工智能工程师的崛起)」 分享了他的观察和思考,引起了科技领域的极大关注。
🔔 最出圈的一张光谱图

-
Swyx 绘制了一张岗位光谱图,👈 左侧受到数据/研究约束 (Data/Research constrainted),👉 右侧受到产品/用户约束 (Product/User constrainted);最左侧岗位与机器学习 (ML) 密切相关,最右侧岗位已经不涉及 ML 技能。划分边界就是 API (大模型调用接口)。
-
目前,底层大模型已经爆发,生成式AI应用也有爆发趋势。两端同时爆发,必将催生大量的人才需求。普通公司受限于人才和算力无法参与大模型训练,因此机会主要在右侧。
-
因此,大多数公司生存逻辑转变为使用AI能力做出产品。这意味着公司不需要再配备庞大的 ML 算法团队,而是专注于调用大模型 API 并进行产品化。这就是 AI Engineer (人工智能工程师)。
🔔 新的需求催生新的岗位
-
不同于 Prompt Engineer 成为各岗位兼具的基础技能,AI Engineer 必须是全职岗位,因为要处理的挑战又多又关键:① 测评源源不断的开/闭源大模型,② 尝试最新的技术框架和技术产品,③ 紧跟论文/融资/产品/活动等行业动态……
-
AI Engineer 正在将AI的进步,转化为数百人可以使用的产品。他们可能是独立开发者,可能是一个小型创业团队,可能在知名创业公司 (比如 HeyGen、Figma、Notion),也可能身在微软、谷歌等科技巨头。
-
AI Engineer 是软件工程衍生出的新分支,专门研究AI的应用并有效运用新兴的技术栈。新岗位的出现,源自平台转换带来的代际变革,曾经的 DevOps工程师、数据工程师等也是这样。
2013年,完成一个AI任务需要耗费整个研究团队5年的时间。而时间来到2023年,你只需要一份 API 文档和一个空闲的下午。
2. Swyx 周年回顾,坚信 AI Engineer 是未来十年需求最旺盛的工程师岗位

[Latent Space] 播客共50分钟 → https://www.latent.space/p/high-agency
前段时间,「The Rise of the AI Engineer」这篇文章的作者 Swyx,串台播客频道 High Agency,与 Reza Habib 聊了聊文章出圈一年后,他最新的观察与思考。
🔔 AI Engineer VS ML Engineer
Swyx 试图从多个角度更精准地描述 AI Engineer (人工智能工程师) 这个新兴岗位,比如与 ML Engineer (机器学习工程师) 的边界,与AI产品经理的协作新方式等等。
-
AI Engineer 更多处于0到1的阶段,而 ML Engineer 更多处于1到N的阶段。
-
AI Engineer 更多地思考产品,ML Engineer 要处理具体的端到端问题 (基于 baseline 为某个特性问题构建或优化模型,实现具体的数据目标)。
-
AI Engineer 的世界由模型开始,到产品结束,更接近全栈开发;ML Engineer 世界从模型开始,到模型结束,数学要非常好。
- AI Engineer 是一种新的人才和技能组合,既融合了 ML Engineer 的部分特质,又借鉴了全栈开发的技能要求,同时也很注重产品能力。一般来说,拥有的 ML Engineer 技能越多,作为 AI Engineer 就越成功。
-
在一个成熟团队里,AI Engineer 和 ML Engineer 的比例大约是四比一。
-
换个角度理解,AI Engineer 承包了 ML Engineer 工作中与模型无关的部分,使得 ML Engineer 有余力和能力去研究模型。或者说,市场并没有足够多的 ML Engineer 储备,因此需要一个新的角色来填平各方的需求。
🔔 fire - ready - aim

-
传统机器学习工作流是 aim - ready - fire,要求 Data / ML Engineer 先收集数据、再训练模型、最后投入生产。
-
基于AI的 LLM 工作流是 fire - ready - aim, AI Engineer 先使用提示词快速构建和验证产品创意,再获取特定数据进行微调。不仅速度快,而且成本低 (只有传统工作流的千分之一到万分之一)。
-
在小团队里,AI Engineer 可以胜任产品经理的职能,洞察客户需求,并为产品选择正确的方向。
-
在大团队里,产品经理依然无可替代,这时 AI Engineer 负责提供基础模型的最新动态,并与产品经理一起,通过提示词来快速验证产品创意是否可行。
3. 所以,你也想成为 AI Engineer 嘛?转型升职成功的大佬这么说…

原文详细介绍了作者做的每一件事情 → https://adamfallon.com/2024/07/10/so-you-want-to-become-an-ai-engineer
作者是一名高级iOS开发工程师。他用一年时间顺利转型升职,并开始担任公司的 AI Engineer 主管。并在文章中详细记录了自己的成长过程。
路径不是唯一的,但这个过程中的思考和经验,还是很有借鉴意义的!!作者还分享了一份优质学习资料清单!!
🔔 转型
-
生成式AI正在迫使软件工程师去贴近产品开发。
-
未来,大模型能力一旦突破某个临界点,软件工程师的编程能力将基本被AI取代。届时,软件工程师的竞争优势就变成了:对AI模型的功能进行巧妙的组合,打造有趣的产品,推进公司的发展目标。
-
如果这个预测成真,那么技能栈越广泛的工程师,将越受欢迎。
🔔 上岸
- 如果用一句话概括 AI Engineer 的工作内容,那就是:探索如何把AI融入到产品中。
- 如果向进一步了解 AI Engineer 的日常工作和所需技能,可以从这个清单开始:
- 围绕大语言模型 (LLM) 构建系统和功能。理解和使用大语言模型,并绕过遇到的各种限制,把相关上下文有效地融入到发送给 LLM 的消息中。
- 向产品团队和领导阐释生成式AI带来的机遇。
- 与机器学习工程师合作,有效评估模型性能。
- 协助制定执行团队的战略。
- 与工程负责人共同制定产品路线图和开发顺序。
- 大量的实际编程工作,包括后端和前端开发,将创意变为产品功能。
- 一年时间里,作者做了以下这些事情:
- 创建 Proof of Concepts (概念验证,可以理解为 Demo),并勇敢对外分享。比如参加黑客松比赛。
- 积极分享,参与并引导主题讨论。比如,在 Slack 创建相关频道并分享不错的文章、论文,或者分享在GitHub 和 Hugging Face 上制作小原型。
- 与决策者沟通对话,提供有价值的见解和可行方案。比如,借鉴某产品的AI功能实现方式,或者引入新的AI框架或者开发工具,并帮助他们理解如何应用新技术。

- 快速行动,积极参与产品的构建和发布。作者在公司内部开展了名为 Guide Book 的AI项目,用6周时间突破障碍并最终发布,取得了非常不错的成绩。
- 回到初学者心态。转型就意味着走出舒适圈,重新经历困惑和痛苦。这对于资深开发者来说还是很有挑战的。
- 模型评估是最有挑战性且至关重要的核心技能。
- 与业界分享经验。积极参与大型活动并争取发言机会,并借此结识更多同行者。
- 作者给出了一份必须清单
坚定职业选择的信心
- 我如何成为一名机器学习从业者 → https://blog.gregbrockman.com/how-i-became-a-machine-learning-practitioner
- 是时候成为一名机器学习工程师了 → https://blog.gregbrockman.com/its-time-to-become-an-ml-engineer
理解机器学习基本概念
- [Book] 百页机器学习 → https://www.amazon.co.uk/Hundred-Page-Machine-Learning-Book/dp/199957950X
- [Video] 线性代数的本质 → https://www.youtube.com/watch?v=kjBOesZCoqc&list=PL0-GT3co4r2y2YErbmuJw2L5tW4Ew2O5B
LLM爆发带来的机会
- 文本是通用接口 → https://scale.com/blog/text-universal-interface
- LLM应用的新兴架构 | Andreessen Horowitz → https://a16z.com/emerging-architectures-for-llm-applications
LLMs及其工作原理介绍
- 图解 Transformer | Jay Alammar → https://jalammar.github.io/illustrated-transformer
- [Paper] Attention Is All You Need → https://arxiv.org/pdf/1706.03762
- [YouTube] Andrej Karpathy → https://www.youtube.com/@AndrejKarpathy/videos
- What Is ChatGPT Doing … and Why Does It Work? | Stephen Wolfram → https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work
微调
- [Episode 1] LLM 实验 (Fine Tuning) → https://adamfallon.com/2024/01/30/experiments-in-llms-episode-1-fine-tuning
向量数据库 + 嵌入
- [Episode 2] LLM 实验 (Memory - Vector DBs and Embeddings) → https://adamfallon.com/2024/01/30/experiments-in-llms-episode-2-memory-vector-dbs-and-embeddings
4. 从招聘者视角谈谈,AI Engineer 的最佳技能组合 1, 2, 3

Elicit 是一家生成式人工智能初创公司。
工程主管 James Brady 写了一篇博文「How To Hire AI Engineers」,分享自己2020年转型AI后的发展历程,以及目前对公司 AI Engineer 这一岗位的人员招聘和培养心得。
一片混沌的当下,有工程团队愿意结合实际经验分享内部信息,并且尝试给出岗位明确的界定,是一件非常难得的事情 🥳

- 一位出色的 AI Engineer 可以把看似对立的特质融合起来:既能了解模型能力边界并对其留有敬畏,也能理解不完美的现状,并基于此构建弹性和高性能的系统。
- [必备技能1] 传统的软件工程技能,特别是在复杂的、数据密集型应用程序上的后端工程经验
- 在大规模应用中的专业、实战经验
- 在几个后端 Web 框架上的深入、实践经验
- 一定的 DevOps 知识和对基础设施最佳实践的理解
- 队列、消息总线、事件驱动和无服务器架构……拥有丰富的工具箱
- [必备技能2] 对语言模型能力,有着真正的好奇心和热情
- 在以有趣方式使用语言模型,并且有一个或多个比价正式的项目
- 具备一定程度的分解认知能力**,例如把问题分解后,知道哪些任务可以交给语言模型,哪些要保留在传统的启发式和计算能力领域
- 对 ML 有一定的了解,以便跟机器学习工程师或机器学习专家等进行沟通
- [必备技能3] 理解使用大模型带来的挑战,形成防御性、故障优先的思维方式
- 仔细而有原则地处理错误情况、异步代码、流式数据、缓存、日志记录和分析,了解生产环境中的行为
- AI Engineer 即使在相对较小的规模上工作时,也需要培养防御性、故障优先的思维方式
- AI Engineer 面试流程 (原文和播客介绍得非常详细,包含大量的工程实践细节,推荐!)
- 30分钟的介绍性对话。非技术性,了解候选人的职业发展路径和目标。
- 60分钟的技术面试。编程练习,要求候选人完成一个小型Web应用程序进行修改。
- 60-90分钟的非技术面试。回顾候选人的专业经历,识别高光时刻和低谷,了解他们在哪些类型的挑战和环境中能够茁壮成长。
- 现场面试。在办公室度过半天,尽可能多地与团队成员见面,进行更多的技术和非技术对话。
How To Hire AI Engineers → https://blog.elicit.com/how-to-hire-ai-engineers/

一份值得所有AI企业学习的 JD | AI Engineer → https://elicit.com/careers?ashby_jid=d27d51d7-b318-4cb0-9b88-c37de18905f3
Elicit 公司官网的 AI Engineer 岗位招聘说明也非常棒!
不仅详细说明了公司对这个岗位的定位,还给出了目前全部的技术栈、几道自测题,帮助候选人判断是否合适。
而且!还给出了入职后的工作安排,详细到第一周、第一个月、第一个季度的关键进展,都有详细的说明,真的非常清晰且负责 👍

[Latent Space] How To Hire AI Engineers → https://www.latent.space/p/hiring
文章作者 James Brady 也在上个月做客 Latent Space 播客频道,接受主持人 Swyx 的采访,围绕文章和 How To Hire AI Engineers 这个主题,分享了更多多多实际工程经验 (非常多的细节和技巧)~
如果你想成为 AI Engineer,或者想判断下自己的水平,建议收听完整播客节目,或者查看页面转录的文字版本。
5. AI Engineer 的机器学习阅读清单,正所谓技多不压身~

Elicit Machine Learning Reading List → https://github.com/elicit/machine-learning-list
James Brady 在 👆 上面文章和播客里反复提到「Elicit Machine Learning Reading List」,也就是 Elicit 公司内部整理的一份 机器学习阅读清单,可以帮助 AI Engineer 快速了解 ML 相关背景知识,以及语言模型的重点内容。
掌握最核心的 ML 相关技能,对 AI Engineer 来说是大大的加分项 🥳 也是真正「入行」必须迈过的门槛~
以下是内容目录。不过,需要说明的是,对于 AI Engineer 的技能边界,业内还没有完全形成共识,所以这个清单也仅供参考~
基础知识
- 机器学习入门
- Transformers
- 基础模型结构
- 训练与微调
推理与执行策略
- 情境推理 In-context reasoning
- 任务分解 Task decomposition
- 辩论策略 Debate
- 工具应用与辅助
- Honesty, factuality, and epistemics
应用领域
- 科学研究
- 预测分析
- 搜索与排序
机器学习实践
- 实际部署
- 性能评估
- 数据集管理
高级议题
- 世界观模型与因果关系
- 决策规划
- 不确定性处理、模型校准与主动学习
- 模型可解释性与调整
- 强化学习技术
宏观视角
- AI的扩展与应用
- AI的安全性问题
- AI对经济和社会的影响
- AI哲学思考
维护者

以 Transformers 板块为例。可以看到,清单中每部分内容都包含4个 tier。按照从1到4的顺序阅读,即可基本覆盖这部分的内容要点~
而且!清单还在持续更新中!✨ 表示在今年4月进行了补充
6. AI Engineer 的面试考察要点,以及资深面试官的「秘密」题库

Eugene Yan 的上一篇文章你一定读过 | What We’ve Learned From A Year of Building with LLMs → https://applied-llms.org/
Eugene Yan 最最最新长文!
大佬分享了团队在 AI Engineer 招聘时的技能要求,并且给出了非常具体的判断标准。而且!每项技能还给出了几道面试题!!
敢于在行业混沌初期立标准,大佬的魄力不服不行~
🔔 技术能力
- 具备基本的软件工程能力。通过编程任务,判断候选人是否能逻辑地分解问题,编写清晰、易读、可维护的代码,考虑到边界情况,对反馈反应良好等。
- 检查 2D/3D 数组是否满足预定义条件,处理边界情况,并编写单元测试
- 实现并启动一个推理端点,包括输入/输出验证、日志记录、监控和更新端点状态的命令
- 构建一个数据处理管道,先实现批处理,然后改造为流处理
- 数据素养是至关重要但常被忽视的技能。核心包括理解并尊重数据、精通数据分析,以及在数据或分析结果可疑时的敏锐直觉。
- 你是如何处理数据的?遇到了哪些问题,又是如何解决的?
- 你遇到过哪些具有误导性的汇总统计?哪些统计更有用?
- 你创建过哪些有见地的数据可视化,为什么?哪些可视化效果不佳?
- 能够适应不透明模型的输出。能够接受我们无法完全控制或解释大多数模型,并且所有模型都会反映其训练数据中的偏见。
- 你遇到过哪些意外或有偏见的输出?如果需要,你是如何处理的?
- 你在模型周围设置了哪些防护措施或策略,以确保其与用户需求一致?
- 如果你发现模型中出现了偏见,你会如何缓解?
- 理解基本的评估方法。虽然 AI Engineer 不直接训练模型,但也有责任评估所使用的模型。
- 你如何随着模型的重新训练或更新来衡量其性能?
- 当模型性能突破预定阈值时,你会如何应对?
- 你是如何收集初始评估数据并构建评估框架的?
🔔 非技术能力
- 面试高级职位时,还需要从非技术方面进行考察,可以从以下4个维度来进行评估:
- 模糊性:候选人开始工作时问题的不明确程度
- 影响力:候选人通过协作来推动影响的范围
- 复杂性:问题本身的错综复杂程度
- 执行力:候选人在有限资源和时间内交付成果的能力
-
大多数技术技能是可以培养的,而主人翁意识、资源调配能力和坚韧不拔的毅力这类特质可能只能靠招聘。
-
一个主观观点:强有力的人才应具备的核心特质包括渴望、判断力、同理心。

◉ 点击 👀日报&周刊合集,订阅话题 #ShowMeAI日报,一览AI领域发展前沿,抓住最新发展机会!
◉ > 前往 🎡ShowMeAI,获取结构化成长路径和全套资料库,用知识加速每一次技术进步!