算法设计与分析实验指导(完整版)

算法设计与分析实验指导

1. 快速排序及第k小数

1.1 快速排序

1.1.1 Implementation 1

核心代码如下:

int partition(vector<int> &nums, int l, int r) {
    int i = l;
    int j = r;
    while (i < j) {
        while (i < j && nums[j] >= nums[l]) j--;
        while (i < j && nums[i] <= nums[l]) i++;
        swap(nums[i], nums[j]);
    }
    swap(nums[i], nums[l]);
    return i;
}

void quickSort(vector<int> &nums, int l, int r) {
    if (l >= r) return;
    int i = partition(nums, l, r);
    quickSort(nums, l, i - 1);
    quickSort(nums, i + 1, r);
}

1.1.2 算法特性分析

时间复杂度:

最佳Ω(NlogN) : 最佳情况下, 每轮哨兵划分操作将数组划分为等长度的两个子数组;哨兵划分操作为线性时间复杂度 O(N);递归轮数共 O(logN) 。

平均Θ(NlogN) : 在随机输入数组下,哨兵划分操作的递归轮数也为O(logN) 。

最差 O(N^2): 在某些特殊输入数组下,每轮哨兵划分操作都将长度为 N 的数组划分为长度为1和N−1的两个子数组,此时递归轮数达到N 。

虽然平均时间复杂度与「归并排序」和「堆排序」一致,但在实际使用中快速排序 效率更高 ,这是因为:

最差情况稀疏性: 虽然快速排序的最差时间复杂度为 O(N^2),差于归并排序和堆排序,但统计意义上看,这种情况出现的机率很低。大部分情况下,快速排序以 O(NlogN) 复杂度运行。

缓存使用效率高: 哨兵划分操作时,将整个子数组加载入缓存中,访问元素效率很高;堆排序需要跳跃式访问元素,因此不具有此特性。

常数系数低: 在提及的三种算法中,快速排序的 比较、赋值、交换 三种操作的综合耗时最低(类似于插入排序快于冒泡排序的原理)。

原地: 不用借助辅助数组的额外空间,递归仅使用O(logN) 大小的栈帧空间。

非稳定: 哨兵划分操作可能改变相等元素的相对顺序。

自适应: 若每轮哨兵划分操作都将长度为 NN 的数组划分为长度1和N−1两个子数组,则时间复杂度劣化至O(N^2)。

1.1.3 Improvement 1: 降低空间复杂度——Tail Call

最坏情况进行N次递归,那么最差时间复杂度会达到O(N)。

每轮递归时,仅对 较短的子数组 执行哨兵划分 partition() ,就可将最差的递归深度控制在O(logN) (每轮递归的子数组长度都≤ 当前数组长度),即实现最差空间复杂度 O(logN) 。

代码只需修改quick_sort():

void quickSort(vector<int> &nums, int l, int r) {
	while (l < r) {
        int i = partition(nums, l, r);
        if (i - l < r - i) {
            quickSort(nums, l, i - 1);
            l = i + 1;
        }
        else {
            quickSort(nums, i + 1, r);
            r = i - 1;
        }
    }
}

1.1.3 Improvement 2:避免最坏情况——随机基准数

通过随机函数,随机选取哨兵值,极大程度避免完全有序或者完全倒序的情况下时间复杂度为O(n2)的情况。

partition()代码修改如下:

int partition(vector<int>& nums, int l, int r) {
    // 在闭区间 [l, r] 随机选取任意索引,并与 nums[l] 交换
    int ra = l + rand() % (r - l + 1);
    swap(nums[l], nums[ra]);
    // 以 nums[l] 作为基准数
    int i = l, j = r;
    while (i < j) {
        while (i < j && nums[j] >= nums[l]) j--;
        while (i < j && nums[i] <= nums[l]) i++;
        swap(nums[i], nums[j]);
    }
    swap(nums[i], nums[l]);
    return i;
}

1.2 第k小数

1.2.1 Implementation 1: 基于快排

继承快排的思想,当哨兵位置为k时返回对应值。

partition部分可以继续沿用1.1.3的改进,将quickSort段代码改成如下:

int kMin(vector<int>& nums, int l, int r, int k) {
    int i = partition(nums, l, r);
    if (i == k) {
        return nums[k];
    }
    if (i < k) {
        return kMin(nums, i + 1, r, k);
    }
    else return kMin(nums, l, i - 1, k);
}

该方法的时间复杂度为θ(n),但是最坏情况达到了O(n2)。

空间复杂度为O(logn),即递归调用栈空间的空间代价。

1.2.2 Implementation 2: 基于堆排序

堆的性质是每次弹出最小的一个值,那么找第k小的数,也就是调用k次堆的弹出函数。

堆的API如下:

#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;


template<class T> class myHeap {
private:
    T* heap;
    int capacity;
    const int REFACTOR = 2;
    void heapSort(int n);
    void switchSons(int i, int size);
    void topDownHeapify(int maxPos);
public:
    myHeap();
    myHeap(T* array, int size);
    void insert(T item);
    void pop();
    void print();
    T peek();
};

template<class T> myHeap<T>::myHeap() {
    heap = new T[11];
    capacity = 10;
    heap[0] = 0;
}

template<class T> myHeap<T>::myHeap(T* array, int size) {
    heap = new T[size + 1];
    heap[0] = size;
    capacity = size;
    for (int i = 1; i <= size; i++) {
        heap[i] = array[i - 1];
    }
    heapSort(heap[0]);
}

template<class T> void myHeap<T>::heapSort(int size) {
    if (size == 1) return;
    int n = size / 2;
    for (int i = n; i >= 1; i--) {
        switchSons(i, size);
    }
    swap(heap[1], heap[size]);
    heapSort(size - 1);
}

template<class T> void myHeap<T>::switchSons(int i, int size) {
    if (2 * i + 1 > size) {
        if (heap[i] < heap[2 * i]) {
            swap(heap[i], heap[2 * i]);
        }
        return;
    }

    T left = heap[2 * i];
    T right = heap[2 * i + 1];

    if (right > left && right > heap[i]) {
        swap(heap[i], heap[2 * i + 1]);
    }
    else if (left > heap[i]) {
        swap(heap[i], heap[2 * i]);
    }
}

template<class T> void myHeap<T>::print() {
    for (int i = 1; i <= heap[0]; i++) {
        cout << heap[i] << " ";
    }
    cout << endl;
}

template<class T> void myHeap<T>::insert(T item) {
    if (heap[0] == capacity) {
        capacity *= REFACTOR;
        T* tmp = new T[capacity];
        for (int i = 0; i <= heap[0]; i++) {
            tmp[i] = heap[i];
        }
        heap = tmp;
    }
    heap[heap[0] + 1] = item;
    int i = heap[0]++ + 1;
    int j = heap[0] / 2;
    while (j >= 0 && i != 1) {
        if (heap[j] <= item) break;
        heap[i] = heap[j];
        i = j;
        j = i / 2;
    }
    heap[i] = item;
}

template<class T> void myHeap<T>::pop() {
    if (heap[0] == 0) return;
    // print();
    cout << heap[1] << endl;
    swap(heap[1], heap[heap[0]--]);
    // print();

    topDownHeapify(1);
}

template<class T> void myHeap<T>::topDownHeapify(int maxPos) {
    // 已到达叶子结点
    if (maxPos * 2 > heap[0]) return;
    if (maxPos * 2 == heap[0]) {
        if (heap[heap[0]] < heap[maxPos]) swap(heap[maxPos], heap[heap[0]]);
        return;
    }
    int left = heap[maxPos * 2];
    int right = heap[maxPos * 2 + 1];
    if (right < left && right < heap[maxPos]) {
        swap(heap[maxPos], heap[maxPos * 2 + 1]);
        // print();
        topDownHeapify(maxPos * 2 + 1);
    }
    else if (left < heap[maxPos]) {
        swap(heap[maxPos], heap[maxPos * 2]);
        // print();
        topDownHeapify(maxPos * 2);
    }
}

template<class T> T myHeap<T>::peek() {
    if (heap[0] == 0) {
        exit(1);
    }
    return heap[1];
}

通过上述建立的myHeap类,我们求第k小数也可以用如下方法:

int kMin(myHeap<int> &nums, int k) {
    for (int i = 1; i < k; i++) {
        nums.pop();
    }
    return nums.peek();
}

该方法的时间复杂度为θ(nlogn),但是最坏情况同样达到了O(n2)。

空间复杂度为O(logn),即递归调用栈空间的空间代价。

1.3 正确性验证

为了验证正确性,选择了LeetCode中的一道题目进行验证。

1.3.1 题目:215. 数组中的第K个最大元素

给定整数数组 nums 和整数 k,请返回数组中第 k个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

1.3.2 基于快排的实现
#include <vector>
#include <string>
#include <algorithm>
using namespace std;

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
        int n = nums.size();
        k = n - k;
        return kMin(nums, 0, n - 1, k);
    }

    int partition(vector<int>& nums, int l, int r) {
        int i = l;
        int j = r;
        while (i < j) {
            while (i < j && nums[j] >= nums[l]) j--;
            while (i < j && nums[i] <= nums[l]) i++;
            swap(nums[i], nums[j]);
        }
        swap(nums[i], nums[l]);
        return i;
    }

    int kMin(vector<int>& nums, int l, int r, int k) {
        int i = partition(nums, l, r);
        if (i == k) {
            return nums[k];
        }
        if (i < k) {
            return kMin(nums, i + 1, r, k);
        }
        else return kMin(nums, l, i - 1, k);
    }
};
1.3.3 基于堆排序的实现
#include <vector>
#include <string>
#include <algorithm>
using namespace std;

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
        int n = nums.size();
        k = n - k + 1;
        vector<int> ans(n + 1);
        ans[0] = n;
        for (int i = 1; i <= n; i++) {
            ans[i] = nums[i - 1];
        }
        heapSort(ans, n);
        return ans[k];
    }

    void heapSort(vector<int>& heap, int size) {
        if (size == 1) return;
        int n = size / 2;
        for (int i = n; i >= 1; i--) {
            switchSons(heap, i, size);
        }
        swap(heap[1], heap[size]);
        heapSort(heap, size - 1);
    }

    void switchSons(vector<int>& heap, int i, int size) {
        if (2 * i + 1 > size) {
            if (heap[i] < heap[2 * i]) {
                swap(heap[i], heap[2 * i]);
                }
            return;
        }

        int left = heap[2 * i];
        int right = heap[2 * i + 1];

        if (right > left && right > heap[i]) {
            swap(heap[i], heap[2 * i + 1]);
        }
        else if (left > heap[i]) {
            swap(heap[i], heap[2 * i]);
        }
    }
};

2. 棋盘覆盖问题

2.1 思路分析

利用分治的思想:

  • 当k=0时,结束递归;
  • 当k>1时,将2k * 2k的棋盘分成四个2k-1*2k-1的子棋盘,其中有一个子棋盘必然包含一个残缺的方块,另外三个是完整的,这时候在三个完整的子棋盘的边界放一个跨越边界的L型骨牌,作为残缺方块,这样所有四个子棋盘都有了残缺方块,相当于变成了四个规模减小的子问题。

2.2 代码

//棋盘覆盖问题
/*
(tr,tc)是棋盘左上角的方格坐标
(dr,dc)是特殊方格所在的坐标
size是棋盘的行数和列数
*/
#include<iostream>
using namespace std;
int board[100][100];
static int tile = 1;

void ChessBoard(int tr, int tc, int dr, int dc, int size)
{
	if (size == 1) return;//递归边界 

	int t = tile++;//L型骨牌号 
	int s = size / 2;//分割棋盘 
	//覆盖左上角子棋盘 
	if (dr < tr + s && dc < tc + s) ChessBoard(tr, tc, dr, dc, s);//特殊方格在此棋盘中 
	else { //此棋盘中无特殊方格,用t号L型骨牌覆盖右下角 
		board[tr + s - 1][tc + s - 1] = t;
		//覆盖其余方格 
		ChessBoard(tr, tc, tr + s - 1, tc + s - 1, s);
	}
	//覆盖右上角子棋盘 
	if (dr < tr + s && dc >= tc + s) ChessBoard(tr, tc + s, dr, dc, s);//特殊方格在此棋盘中
	else { //此棋盘中无特殊方格,用t号L型骨牌覆盖左下角
		board[tr + s - 1][tc + s] = t;
		//覆盖其余方格 
		ChessBoard(tr, tc + s, tr + s - 1, tc + s, s);
	}
	//覆盖左下角子棋盘 
	if (dr >= tr + s && dc < tc + s) ChessBoard(tr + s, tc, dr, dc, s);
	else { //此棋盘中无特殊方格,用t号L型骨牌覆盖右上角
		board[tr + s][tc + s - 1] = t;
		//覆盖其余方格 
		ChessBoard(tr + s, tc, tr + s, tc + s - 1, s);
	}
	//覆盖右下角子棋盘 
	if (dr >= tr + s && dc >= tc + s) ChessBoard(tr + s, tc + s, dr, dc, s);
	else { //此棋盘中无特殊方格,用t号L型骨牌覆盖左上角 
		board[tr + s][tc + s] = t;
		//覆盖其余方格 
		ChessBoard(tr + s, tc + s, tr + s, tc + s, s);
	}
}

int main()
{
	int i, j;
	int k;
	while (cin >> k)
	{
		int size = 1 << k;
		int x, y;
		cin >> x >> y;
		board[x][y] = 0;
		ChessBoard(0, 0, x, y, size);
		for (i = 0; i < size; i++)
		{
			for (j = 0; j < size; j++)
				cout << board[i][j] << "\t";
			cout << "\n";
		}
	}
	return 0;
}

2.3 测试数据

假设一个22*22的棋盘,在[2, 2]位置插入残缺子块(记为0号),测试结果如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XWZSz6nz-1653231374907)(C:\Users\ASUS\AppData\Roaming\Typora\typora-user-images\image-20220521234255845.png)]

3. 背包问题

3.1 0-1背包问题

3.1.1 思路分析

动态规划三步走:

(1)确定状态:

  • dpij:检查过前i个物品,空间限度为j的背包最大价值

(2)确定状态转换:要么将第i个物品加进来,要么不加进来

  • d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − a [ i ] ] + v [ i ] ) dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - a[i]] + v[i]) dp[i][j]=max(dp[i1][j],dp[i1][ja[i]]+v[i])

(3)确定初始状态:

  • i < a [ 0 ] : d p [ 0 ] [ i ] = 0 i < a[0]:dp[0][i] = 0 i<a[0]:dp[0][i]=0
  • i > = a [ 0 ] : d p [ 0 ] [ i ] = v [ i ] i >= a[0]:dp[0][i] = v[i] i>=a[0]:dp[0][i]=v[i]
3.1.2 动态规划
class Solution {
public:
    /**
     * @param m: An integer m denotes the size of a backpack
     * @param a: Given n items with size A[i]
     * @param v: Given n items with value V[i]
     * @return: The maximum value
     */
    int backPackII(int m, vector<int> &a, vector<int> &v) {
        // write your code here
        vector<vector<int>> dp(a.size(), vector<int>(m + 1));
        for (int i = 0; i < a[0]; i++) {
            dp[0][i] = 0;
        }
        for (int i = a[0]; i <= m; i++) {
            dp[0][i] = v[0];
        }
        for (int i = 1; i < a.size(); i++) {
            for (int j = 0; j <= m; j++) {
                if (j >= a[i]) dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - a[i]] + v[i]);
                else dp[i][j] = dp[i - 1][j];
            }
        }
        return dp[a.size() - 1][m];
    }
};
3.1.3 空间优化

发现在dp的过程中与前一个状态有关,所以可以将空间复杂度降低到O(m)。

class Solution {
public:
    /**
     * @param m: An integer m denotes the size of a backpack
     * @param a: Given n items with size A[i]
     * @param v: Given n items with value V[i]
     * @return: The maximum value
     */
    int backPackII(int m, vector<int> &a, vector<int> &v) {
        // write your code here
        vector<int> dp(m + 1);
        for (int i = 0; i < a[0]; i++) {
            dp[i] = 0;
        }
        for (int i = a[0]; i <= m; i++) {
            dp[i] = v[0];
        }
        for (int i = 1; i < a.size(); i++) {
            for (int j = m; j >= 0; j--) {
                if (j >= a[i]) dp[j] = max(dp[j], dp[j - a[i]] + v[i]);
            }
        }
        return dp[m];
    }
};

测试结果如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xAsBG70b-1653231325669)(C:\Users\ASUS\AppData\Roaming\Typora\typora-user-images\image-20220522140106675.png)]

3.2 背包问题

3.2.1 题目描述
物品ABCDEFG
重量35306050401025
价值10403050354030

有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

3.2.2 思路分析

与0-1问题不同,这题要换个思路,采用贪心的思想:

  1. 对物品的单位价值进行排序;
  2. 从单位价值从高到低,依次加入背包,如果能全部装得下,就全部装进去,直到没办法将所有的装入为止;
  3. 当没办法全部装入之后,将物品装入至装满;
3.2.3 代码实现
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

double packetProblem(int size, vector<int> weights, vector<int> values) {
	vector<pair<double, int>> selector;
	for (int i = 0; i < weights.size(); i++) {
		selector.push_back(make_pair(values[i] / double(weights[i]), i));
	}
	sort(selector.begin(), selector.end());
	int totalSize = 0;
	double ans = 0;
	int j = selector.size() - 1;
	while (totalSize < size || j == -1) {
		if (weights[selector[j].second] + totalSize > size) break;
		ans += values[selector[j].second];
		totalSize += weights[selector[j].second];
		j--;
	}
	if (j != -1) ans += selector[j].first * double(size - totalSize);
	return ans;
}

int main() {
	int size = 150;
	vector<int> weights = { 35, 30, 60, 50, 40, 10, 25 };
	vector<int> values = { 10, 40, 30, 50, 35, 40, 30 };
	cout << "最大价值:" << packetProblem(size, weights, values);
}

根据计算,最大价值为190.625,测试结果如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-k3zwzoGR-1653231325670)(C:\Users\ASUS\AppData\Roaming\Typora\typora-user-images\image-20220522143130912.png)]

4.照亮山景

4.1 思路分析

在这里插入图片描述

找到所有的山峰,对每对山峰之间的坡进行区间划分,当一盏灯在左山峰的右坡,和右山峰的左坡之间时,该灯可以照亮山峰之间的所有坡;利用贪心的思想,每次对灯可以处理的坡数进行计算,选出能照亮最多坡的灯,加入答案,然后重新寻找,直到所有坡都被点亮

4.2 代码实现

vector<int> findTops(vector<int> x, vector<int> y) {
	vector<int> tops;
    // 判断左右边界是否为山峰
	if (y[0] > y[1]) tops.push_back(0);
	if (y[y.size() - 1] > y[y.size() - 2]) tops.push_back(y.size() - 1);
	for (int i = 1; i < y.size() - 1; i++) {
		if (y[i] > y[i - 1] && y[i] > y[i + 1]) {
			tops.push_back(i);
		}
	}
	return tops;
}

vector<int> leastLightNum(vector<int> x, vector<int> y, int height, vector<int> lights) {
	/* 1.找到所有山峰 */
	vector<int> tops = findTops(x, y);
	/* 2.处理坡数与区间 */
	// 计算延长线的变量
	int x1, x2, x3, x4, y1, y2, y3, y4;
	// 每个区间的坡数
	vector<int> slopeNumber;
	// 区间范围
	vector<pair<double, double>> sections;
	// 处理左边界
	double left, right;
	if (tops[0] > 0) {
		x1 = x[tops[0] - 1];
		x2 = x[tops[0]];
		y1 = y[tops[0] - 1];
		y2 = y[tops[0]];
		right = (height - y1) * (x2 - x1) / double(y2 - y1) + x1;
		slopeNumber.push_back(tops[0]);
		sections.push_back(make_pair(INT_MIN, right));
	}
	// 处理山峰之间
	for (int i = 0; i < tops.size() - 1; i++) {
		x1 = x[tops[i]];
		y1 = y[tops[i]];
		x2 = x[tops[i] + 1];
		y2 = y[tops[i] + 1];
		x3 = x[tops[i + 1] - 1];
		y3 = y[tops[i + 1] - 1];
		x4 = x[tops[i + 1]];
		y4 = y[tops[i + 1]];
		left = (height - y1) * (x2 - x1) / double(y2 - y1) + x1;
		right = (height - y3) * (x4 - x3) / double(y4 - y3) + x3;
		slopeNumber.push_back(tops[i + 1] - tops[i] + 1);
		sections.push_back(make_pair(left, right));
	}
	// 处理右边界
	if (tops[tops.size() - 1] < x.size() - 1) {
		x1 = x[tops[tops.size() - 1]];
		x2 = x[tops[tops.size() - 1]];
		y1 = y[tops[tops.size() - 1] + 1];
		y2 = y[tops[tops.size() - 1] + 1];
		left = (height - y1) * (x2 - x1) / double(y2 - y1) + x1;
		slopeNumber.push_back(x.size() - 1 - tops[tops.size() - 1]);
		sections.push_back(make_pair(left, INT_MAX));
	}
	/* 3.利用贪心依次亮灯 */
	vector<int> ans;
	int count = sections.size();
	int max, index;
	while (count > 0) {
		vector<int> tmp; // 存选出的灯所关联的区间
		int nums = 0;	// 该灯点亮的坡数
		max = 0;
		index = -1;
		for (int i = 0; i < lights.size(); i++) {
			vector<int> relatedSection; // 存储当前灯关联的区间
			for (int j = 0; j < sections.size(); j++) {
				// 如果灯在照亮的区间范围内
				if (lights[i] > sections[j].first && lights[i] < sections[j].second) {
					relatedSection.push_back(j);
					nums += slopeNumber[j];
				}
			}
			// 选出点亮最多区域的灯
			if (nums > max) {
				max = nums;
				index = i;
				tmp = relatedSection;
			}
		}
		// 更新剩余的区域数
		count -= tmp.size();
		ans.push_back(index);
		// 将已被覆盖的点移出
		for (int i : tmp) {
			sections[i].first = sections[i].second = -1;
		}
	}
	return ans;
}

4.3 时间复杂度分析

在最坏的情况下:

  1. 每次只能减少一个 s e c t i o n section section
  2. 每次要遍历 n u m s ( l i g h t s ) ∗ n u m s ( s e c t i o n ) nums(lights)*nums(section) nums(lights)nums(section)个点;

假设山上的点数量为 n n n,那么 s e c t i o n section section的数量为 n − 2 n-2 n2,假设 l i g h t s lights lights的数量为 m m m,那么时间复杂度的上界为 O ( n 2 ∗ m ) O(n^2*m) O(n2m)

5. 汽车加油问题

5.1 思路分析

在每次出发前判断:如果能跑到下一个站就不加油,如果跑不到就加油。

5.2 代码实现

int leastOilTime(int N, int K, vector<int> a) {
	int gasCapacity = N;
	int time = 0;
	for (int i = 1; i <= K; i++) {
		// 如果能跑到下一个站就不加油
		if (a[i] < gasCapacity) {
			gasCapacity -= a[i];
			continue;
		}
        if (a[i] > N) {
            cerr << "汽车不可能跑到终点" << endl;
            exit(1);
        }
        // 跑不到就加油
		gasCapacity = N;
		time++;
	}
	return time;
}

5.3 时间复杂度分析

O ( K ) O(K) O(K)

6. 最长公共子序列

6.1 思路分析

动态规划三步走:

(1)确定状态:

  • dpij t e x t 1 text1 text1 i i i个字符构成的子串与 t e x t 2 text2 text2 j j j个字符构成的子串的最长公共子序列长度。

(2)确定状态转换:如果字符相等,那么 L C S LCS LCS i − 1 , j − 1 i-1,j-1 i1,j1时加一,

  • d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1 < = t e x t 1 [ i − 1 ] = t e x t [ j − 1 ] dp[i][j] = dp[i - 1][j-1]+1<=text1[i-1]=text[j-1] dp[i][j]=dp[i1][j1]+1<=text1[i1]=text[j1]

​ 否则,取 d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] dp[i-1][j],dp[i][j-1] dp[i1][j],dp[i][j1]中的最大值

  • d p [ i ] [ j ] = m a x ( d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j ] ) < = t e x t 1 [ i − 1 ] ! = t e x t [ j − 1 ] dp[i][j] = max(dp[i][j-1],dp[i-1][j])<=text1[i-1]!=text[j-1] dp[i][j]=max(dp[i][j1],dp[i1][j])<=text1[i1]!=text[j1]

(3)确定初始状态:

  • d p [ 0 ] [ j ] = 0 , d p [ i ] [ 0 ] = 0 dp[0][j] = 0, dp[i][0] = 0 dp[0][j]=0,dp[i][0]=0

6.2 代码实现

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int m = text1.size();
        int n = text2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (text1[i - 1] == text2[j - 1])
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                else 
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
            }
        }
        return dp[m][n];
        }
};

6.3 LeetCode测试结果

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6tKShWlK-1653231325671)(C:\Users\ASUS\AppData\Roaming\Typora\typora-user-images\image-20220522162523730.png)]

6.4 空间优化

注意到dp只和前一轮状态有关,所以可以进行空间优化:

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int m = text1.size();
        int n = text2.size();
        if (m > n) return longestCommonSubsequence(text2, text1);
        vector<int> dp(n + 1);
        for (int i = 1; i <= m; i++) {
            int last = dp[0];
            for (int j = 1; j <= n; j++) {
                int temp = last;
                last = dp[j];
                if (text1[i - 1] == text2[j - 1])
                    dp[j] = temp + 1;
                else 
                    dp[j] = max(dp[j], dp[j - 1]);
            }
        }
        return dp[n];
        }
};

可以看到有所进步:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0WbjMakL-1653231325672)(C:\Users\ASUS\AppData\Roaming\Typora\typora-user-images\image-20220522163517060.png)]

7. 皇后看守

7.1 思路分析

首先这道题的题意是:给定一棵树,要在一些节点上放置守卫,每个守卫可以看护当前节点以及与此节点连通的节点,在不同节点放置守卫的代价不同,如何选取节点使代价最小,这是个典型的树形DP问题,显然每个节点有放置守卫和不放置守卫两种,但是从计算的过程看,不放置守卫的状态有两种,一种是有其父节点上的守卫看护,一种是由其子节点的守卫看护,因此可将每个节点的看护情况分为三种:

  1. 该节点由父节点处放置的守卫看护;
  2. 该节点由子节点处放置的守护看护;
  3. 该节点由在该节点放置的守卫看护;

下面考虑状态转移的过程,建立数组f[i][3],其中:

  1. f [ i ] [ 0 ] f[i][0] f[i][0]表示第 i i i个节点由父节点处放置的守卫看护下的最小代价;
  2. f [ i ] [ 1 ] f[i][1] f[i][1]表示第 i i i个节点由子节点处放置的守卫看护下的最小代价;
  3. f [ i ] [ 2 ] f[i][2] f[i][2]表示第 i i i个节点由在该节点放置的守卫看护下的最小代价;

下面讨论状态转移方程:

由父节点放置守卫看守时,儿子结点只能由自身或者儿子来看守:

f [ i ] [ 0 ] + = m i n ( f [ j ] [ 1 ] , f [ j ] [ 2 ] ) f[i][0] += min(f[j][1], f[j][2]) f[i][0]+=min(f[j][1],f[j][2])

由子节点放置守卫看守时,选择一个儿子,必须放置看守,其他儿子只能由自身或者儿子的儿子进行看守:

f [ i ] [ 1 ] = m i n ( f [ i ] [ 1 ] , s u m − m i n ( f [ j ] [ 1 ] , f [ j ] [ 2 ] ) + f [ j ] [ 2 ] ) f[i][1] = min(f[i][1], sum - min(f[j][1], f[j][2]) + f[j][2]) f[i][1]=min(f[i][1],summin(f[j][1],f[j][2])+f[j][2])

当在自身放置看守时,儿子结点已经被看守了,选择三种情况中最小的即可:

f [ i ] [ 2 ] + = m i n ( m i n ( f [ j ] [ 0 ] , f [ j ] [ 1 ] ) , f [ j ] [ 2 ] ) f[i][2] += min(min(f[j][0], f[j][1]), f[j][2]) f[i][2]+=min(min(f[j][0],f[j][1]),f[j][2])

7.2 代码实现

// 省略数据处理部分

// u指的是当前讨论的结点号

void dfs(int u) {
    f[u][2] = w[u];	// 初始化在该节点设置守卫的代价
 
    int sum = 0;
    for (int i = h[u]; i != -1; i = ne[i]) {
        // j是孩子结点
        int j = e[i];
        dfs(j);
        f[u][0] += min(f[j][1], f[j][2]);
        f[u][2] += min(min(f[j][0], f[j][1]), f[j][2]);
        sum += min(f[j][1], f[j][2]);
    }
 
    f[u][1] = 1e9;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        // 选择代价最小的节点作为看守
        int j = e[i];
        f[u][1] = min(f[u][1], sum - min(f[j][1], f[j][2]) + f[j][2]);
    }
}
  • 1
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值