EtherCAT转EtherNet/IP网关CEI-382实现罗克韦尔PLC与和利时伺服电机通讯

一、硬件设备说明:    

罗克韦尔(AB)ControlLogix5555系列:PLC CPU

罗克韦尔(AB)1756-ENBT/A以太网模块:支持标准的EtherNet/IP协议

伺服型号:和利时DX50D-S2-040-E/220V/400W 支持EtherCAT协议

电机型号:和利时DXM-H060A-04030-2B2-A1/400W  

上海泗博CEI-382网关:用于实现EtherCAT网络与EtherNet/IP网络之间高速、安全数据交换,即实现EtherCAT从站设备与EtherNet/IP主站设备之间通信

二、CEI-382产品特点:

  • 双以太网口:EtherNet/IP端双网口,内置交换机功能,便于级联扩展。
  • 支持DLR环网冗余:EtherNet/IP端支持Non-DLR,无缝融入DLR环网。
  • 高实时性:3ms协议转换周期,确保高效实时通信。
  • 支持热插拔:EtherCAT从站设备支持在线更换,即插即用,维护便捷。
  • 隔离电源设计:增强抗干扰性能,确保稳定运行。
  • 专业配置工具:ECATStart软件,支持ESI文件解析与离线配置,简化产品设置。

三、伺服硬件接线示意图:

四、AB PLC通过CEI-382对伺服电机进行EtherCAT通讯调试

1.使用CEI-382连接和利时伺服,将网关ECAT口与伺服的ECAT接口的IN口连接。EtherNet/IP口与AB PLC处在一个局域网下;

2.通过配置软件ECATStart软件对CEI-382进行配置

        1)和利时伺服ESI文件导入

导入成功后将伺服图标拖入总线中即可以进行配置

         2)通过ECATStart映射参数实现对伺服pv 控制

概述:pv 控制模式下,电机依照目标速度、目标加减速度加速至指定速度。

控制流程:

设置 Mode of operation(6060h)pv 模式

设置 Profile acceleration(6083h)Profile deceleration(6084h) --可选

设置 Target velocity(60FFh),伺服使能 ON 状态,设置目标速度后会立即执行

伺服PDO映射中选择Control word 6040H与Target velocity 60FFH

对网关EtherNet/IP端的IP地址、设置周期时间、Vendcode、EtherNet/IP端数据显示等参数进行设置


按照上述配置完成后即可对网关进行下载

网关下载完成后会自动重启。

在AB PLC组态软件RSlogix5000中赋值实现电机按照指定速度转动

在和利时伺服的调试软件中可以看到AB PLC写过来的当前值以及当前伺服LED屏显示83run的状态即正常。

        3)在AB PLC RSlogix5000中读取伺服反馈值

基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明,该项目是个人毕设项目,答辩评审分达到98分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指
内容概要:本文档详细介绍了Python反爬虫技术的各种应对策略,包括基础和高级方法。基础部分涵盖User-Agent伪装、IP代理池、请求频率控制等,其中涉及使用fake_useragent库随机生成User-Agent、设置HTTP/HTTPS代理、通过随机延时模拟正常访问行为。动态页面处理方面,讲解了Selenium和Pyppeteer两种自动化工具的使用,可以用于加载并获取JavaScript渲染后的网页内容。对于验证码问题,提供了OCR识别简单验证码、Selenium模拟滑块验证码操作以及利用第三方平台破解复杂验证码的方法。登录态维持章节介绍了如何通过Session对象保持登录状态,并且演示了Cookie的保存读取。数据加密对抗部分探讨了JavaScript逆向工程和WebAssembly破解技巧,如使用PyExecJS执行解密脚本。最后,高级反爬绕过策略中提到了WebSocket数据抓取和字体反爬解析,确保能够从各种复杂的网络环境中获取所需数据。 适合人群:有一定Python编程经验,从事数据采集工作的开发人员。 使用场景及目标:①帮助开发者理解并掌握多种反爬虫绕过技术;②为实际项目中的数据抓取任务提供有效的解决方案;③提高爬虫程序的成功率和稳定性。 其他说明:在学习过程中,建议结合具体案例进行实践,同时注意遵守网站的robots协议及相关法律法规,合法合规地进行数据采集活动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值