Matplotlib基础

1.认识Matplotlib

Matplotlib是一个Python 2D绘图库,可以制作各类静态、动态、交互式的图表,是一款非常有力的数据可视化工具。

Matplotlib可用于Python脚本,Python和IPython Shell、Jupyter notebook,Web应用程序服务器和各种图形用户界面工具包等。

2.Figure的组成

Matplotlib从上而下包括 Figure、Axes、Axis、Tick四个层级,分别代表画布、图表、坐标、刻度。

  • Figure:顶层级,用来容纳所有绘图元素

  • Axes:matplotlib宇宙的核心,容纳了大量元素用来构造一幅幅子图,一个figure可以由一个或多个子图组成

  • Axis:axes的下属层级,用于处理所有和坐标轴,网格有关的元素

  • Tick:axis的下属层级,用来处理所有和刻度有关的元素

3.两种绘图接口

  1. 显式创建figure和axes,在上面调用绘图方法,也被称为OO模式(object-oriented style)

  2. 依赖pyplot自动创建figure和axes,并绘图

    x = np.linspace(0, 2, 100)
    
    fig, ax = plt.subplots()  
    ax.plot(x, x, label='linear')  
    ax.plot(x, x**2, label='quadratic')  
    ax.plot(x, x**3, label='cubic')  
    ax.set_xlabel('x label') 
    ax.set_ylabel('y label') 
    ax.set_title("Simple Plot")  
    ax.legend()

    主要区别就在于有无:fig, ax = plt.subplots()  ,即是否显式创建figure和axes

 不过一般来说不分子图使用pyplot,较为方便;当需要绘制较为复杂精巧的图像时用OO模式,采用多个子图使用oo不容易混杂。

pyplot是面向过程的方法,OO是面向对象的方法。

4.通用绘图模板

# step1 准备数据
x = np.linspace(0, 2, 100)
y = x**2

# step2 设置绘图样式
mpl.rc('lines', linewidth=4, linestyle='-.')

# step3 定义布局
fig, ax = plt.subplots()  

# step4 绘制图像
ax.plot(x, y, label='linear')  

# step5 添加标签,文字和图例
ax.set_xlabel('x label') 
ax.set_ylabel('y label') 
ax.set_title("Simple Plot")  
ax.legend()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值