当AI算力底座与政务数字化深度融合,如何实现效率与安全的双重突破?硅基风暴SiliconStorm研发团队与华为昇腾云开展深度技术合作,基于全栈国产化技术架构,为城市治理注入"高性能计算+极致成本优化"双引擎。本文详解技术方案设计与落地实践。
一、技术架构创新
- 异构计算加速方案
基于昇腾910B芯片与硅基风暴自研的DeepSeek-R1模型,构建"芯片-框架-模型"三级优化体系:
- 使用CANN异构计算架构实现算子自动优化
- 采用MindSpore+昇思混合精度训练框架
- 通过模型量化压缩技术将参数量降低40%
实测数据显示,在政务文档智能审批场景中,推理速度较传统方案提升12.3倍,单次请求计算成本降至1/35。
- 安全增强设计
- 数据层面:基于国密SM4算法的端到端加密传输
- 模型层面:采用动态权重混淆技术防止逆向工程
- 部署架构:政务专有云+容器化隔离方案
二、典型应用场景
1. 智能政务助手(2023杭州试点项目)
- 实现政策文件自动摘要(准确率92.7%)
- 民生诉求智能分拨(日均处理量提升18倍)
- 证照信息交叉核验系统(减少人工复核75%)
2. 城市治理预警平台
- 多模态数据分析:融合12345热线、天网监控等12类数据源
- 研发事件传播预测算法,提前48小时预警群体事件
- 建立市政设施健康度评估模型(故障预测准确率达89%)
三、工程实践难点
- 异构环境适配
- 开发昇腾NPU与国产CPU的混合调度策略
- 构建自动化模型转换工具链
- 设计分布式推理框架(支持千卡级集群)
- 成本控制方案
- 首创"冷热数据分级计算"架构
- 研发自适应批处理机制(动态调节1-128条批次)
- 建立模型推理资源预测系统(资源利用率提升至83%)
四、开发者工具链
硅基风暴同步开源以下工具:
- ModelZoo政务场景预训练模型库(Apache 2.0协议)
- AscendCloud-Adapter中间件(已完成OpenHarmony适配)
- 可视化模型优化平台(支持ONNX/TensorFlow/PyTorch转换)
五、未来演进方向
- 探索多智能体协同决策系统
- 研发具备政策推演能力的政务大模型
- 构建城市级数字孪生治理平台
结语
本次技术合作验证了国产化AI技术栈在数字治理领域的可行性。硅基风暴SiliconStorm将持续深化与昇腾生态的技术协同,推动AI算力普惠化,为数字中国建设提供安全可控的智能底座。