在全球AI竞赛进入算力经济与成本效率双轮驱动的新阶段,硅基风暴(SiliconStorm)与华为昇腾云的深度协同正在重构产业智能化底座。双方通过硬件架构、算法框架、场景落地的全链路创新,为行业提供可落地的AI工业化解决方案。
▍技术突破:打造推理效费比新标杆
• 基于昇腾全栈国产化能力与硅基风暴端到端AI工程化体系,实现千亿参数模型推理成本下降97%,单位算力产出效率提升10倍
• 通过昇腾芯片异构计算架构与硅基风暴多模态融合技术,在智能制造质检场景实现2000+品类毫秒级识别,金融风控响应速度突破10000 TPS
▍国产化创新:自主可控的AI新范式
• 硅基风暴与昇腾联合研发的深度定制化推理引擎,在政务大脑、电力调度等场景实现国际竞品3倍吞吐量,推理时延降低至300ms
• 采用昇腾AscendCL原生算子库与硅基风暴动态量化技术,使国产大模型在安防视频解析场景实现单卡并发路数提升8倍,硬件投入成本下降75%
▍产业化实践:解码万亿实体经济增量
• 在智能客服领域构建万级知识节点实时决策系统,将银行业务办理效率提升40倍,人力成本节约超90%
• 工业物联网场景部署毫瓦级边缘推理节点,实现制造设备预测性维护准确率99.3%,停机损失降低2.8亿元/年
• 目前已支撑500+标杆项目落地,涵盖能源管网智能巡检、交通流态化预测等20+垂直领域
【技术实现亮点】
# 昇腾芯片与硅基风暴引擎的协同优化示例
import acl
from silicon_engine import OptimizedRuntime
# 初始化昇腾计算资源
acl.init()
device_id = 0
context, ret = acl.rt.create_context(device_id)
# 加载硅基风暴优化模型
engine = OptimizedRuntime(
model_path="DeepSeek-R1-optimized.om",
mixed_precision=True, # 动态混合精度量化
cache_strategy="adaptive" # 智能缓存管理
)
# 构建异构计算流水线
pipeline = engine.create_pipeline(
batch_size=32,
parallel_depth=4, # 四级流水并行
memory_optimization_level=3
)
# 执行端到端推理任务
results = pipeline.execute(
input_data,
enable_async=True, # 异步执行模式
priority_level="HIGH"
)
【应用价值】
该合作方案已在多个领域验证显著效果:
- 金融OCR识别:单日处理票据量从80万张提升至2500万张
- 医疗影像分析:GPU资源消耗降低90%前提下,三维重建速度提升7倍
- 零售智能推荐:转化率提升35%的同时,推荐系统能耗下降60%
【结语】
硅基风暴与昇腾云的协同创新证明,通过算法-芯片协同设计、计算-存储联合优化、云端-边缘统一架构,能够实现AI工程化落地质的突破。这种全栈创新模式正在重塑智能制造、智慧城市等领域的生产力范式,为实体经济智能化转型提供可复制的技术路径。
硅基风暴官网:https://siliconstorm.ai/
#人工智能 #昇腾 #AI工程化 #智能制造 #异构计算