PROBLEM:
Given a non-negative integer num
, repeatedly add all its digits until the result has only one digit.
For example:
Given num = 38
, the process is like: 3 + 8 = 11
, 1 + 1 = 2
. Since 2
has only one digit, return it.
Follow up:
Could you do it without any loop/recursion in O(1) runtime?
SOLVE:
class Solution {
public:
int addDigits(int num) {
return 1+(num-1)%9;
}
};
分析:这其实是一个“数根定理”,对于任意“进制b”数n,它的数根等于它对“b-1”取余后的值(在不能被b-1除尽的情况下);等于b-1(在能被b-1除尽的情况下);等于0(n==0)。
For base b (decimal case b = 10), the digit root of an integer is:
- dr(n) = 0 if n == 0
- dr(n) = (b-1) if n != 0 and n % (b-1) == 0
- dr(n) = n mod (b-1) if n % (b-1) != 0
or
- dr(n) = 1 + (n - 1) % 9
Note here, when n = 0, since (n - 1) % 9 = -1, the return value is zero (correct).
From the formula, we can find that the result of this problem is immanently periodic, with period (b-1).