二手车交易价格预测:模型融合

本文探讨了模型融合在二手车交易价格预测中的应用,包括简单加权融合、stacking/blending以及boosting/bagging等方法。通过实例展示了如何通过加权平均和Stacking提高预测准确性,并强调了模型再训练时防止过拟合的策略。同时,提出了特征、结果和模型层面的融合策略,以增强模型的鲁棒性和性能。
摘要由CSDN通过智能技术生成

模型融合听起来高大上,感觉其实是三个臭皮匠顶个诸葛亮的意思(弱弱弱弱地说)
之前用过加权平均法,但是没有完整地学习模型融合方法,由此结合赛题整理一些资料打卡如下:
资料来源:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.15.1cd8593aDCDfxr&postId=95535

学习内容

模型融合是比赛后期一个重要的环节,大体来说有如下的类型方式。
1.简单加权融合:
回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean);
分类:投票(Voting)
综合:排序融合(Rank averaging),log融合

2.stacking/blending:
构建多层模型,并利用预测结果再拟合预测。

3.boosting/bagging
(在xgboost,Adaboost,GBDT中已经用到):多树的提升方法

另外,对于如何降低再训练的过拟合性,这里我们一般有两种方法:
1.次级模型尽量选择简单的线性模型
2.利用K折交叉验证

部分代码展示

1)简单加权平均,结果直接融合

#生成一些简单的样本数据,test_prei 代表第i个模型的预测值
test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]
#y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6]
import numpy as np
import pandas as pd
## 定义结果的加权平均函数
def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):
    Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)
    return Weighted_result
    from sklearn import metrics
# 各模型的预测结果计算MAE
print('Pred1 MAE:',metrics.mean_absolute_error(y_test_true, test_pre1))
print('Pred2 MAE:',metrics.mean_absolute_error(y_test_true, test_pre2))
print('Pred3 MAE:',metrics.mean_absolute_error(y_test_true, test_pre3))
## 根据加权计算MAE
w = [0.3,0.4,0.3] # 定义比重权值
Weighted_pre = Weighted_method(test_pre1,test_pre2,test_pre3,w)
print('Weighted_pre MAE:',metrics.mean_absolute_error(y_test_true, Weighted_pre))

可以发现加权结果相对于之前的结果是有提升的,这种我们称其为简单的加权平均。
还有一些特殊的形式,比如mean平均,median平均
(2)Stacking融合回归

from sklearn import linear_model
def Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,test_pre1,test_pre2,test_pre3,model_L2= linear_model.LinearRegression()):
    model_L2.fit(pd.concat([pd.Series(train_reg1),pd.Series(train_reg2),pd.Series(train_reg3)],axis=1).values,y_train_true)
    Stacking_result = model_L2.predict(pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).values)
    return Stacking_result
    ## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
train_reg1 = [3.2, 8.2, 9.1, 5.2]
train_reg2 = [2.9, 8.1, 9.0, 4.9]
train_reg3 = [3.1, 7.9, 9.2, 5.0]
# y_test_true 代表第模型的真实值
y_train_true = [3, 8, 9, 5] 
test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]
# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6] 
model_L2= linear_model.LinearRegression()
Stacking_pre = Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,
                               test_pre1,test_pre2,test_pre3,model_L2)
print('Stacking_pre MAE:',metrics.mean_absolute_error(y_test_true, Stacking_pre))

融合这个问题,个人的看法来说其实涉及多个层面,也是提分和提升模型鲁棒性的一种重要方法:

1)结果层面的融合,这种是最常见的融合方法,其可行的融合方法也有很多,比如根据结果的得分进行加权融合,还可以做Log,exp处理等。在做结果融合的时候,有一个很重要的条件是模型结果的得分要比较近似,然后结果的差异要比较大,这样的结果融合往往有比较好的效果提升。

2)特征层面的融合,这个层面其实感觉不叫融合,准确说可以叫分割,很多时候如果我们用同种模型训练,可以把特征进行切分给不同的模型,然后在后面进行模型或者结果融合有时也能产生比较好的效果。

3)模型层面的融合,模型层面的融合可能就涉及模型的堆叠和设计,比如加Staking层,部分模型的结果作为特征输入等,这些就需要多实验和思考了,基于模型层面的融合最好不同模型类型要有一定的差异,用同种模型不同的参数的收益一般是比较小的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值