C++ ——“‘itoa‘ was not declared in this scope“ 错误解决方法 C++ ——"‘itoa’ was not declared in this scope" 错误解决方法由于itoa()函数非ANSI C的标准,c++编程时要尽量避免使用,使用snprintf()函数替换。解决方法:// itoa(t,s,10);//使用snprintf函数替换snprintf(s,sizeof(s),"%d",t);...
使用OpenCV画直线、圆、椭圆、矩形以及添加文字 使用OpenCV画直线、圆、椭圆、矩形以及添加文字闲话少说,直接上代码#include <QCoreApplication>#include "opencv2/opencv.hpp"#include <iostream>using namespace std;using namespace cv;void drawLine(Mat &image);void drawRectangle(Mat &image);void drawEllipse(Mat
QT Creator 创建qrc文件和使用资源文件 QT Creator 创建qrc文件和使用资源文件QT Creator 创建qrc文件和使用资源文件1、创建qrc文件2、使用资源文件1、创建qrc文件右键工程文件夹,选择添加新文件->Qt->Qt Resource File.工程会生成resource.qrc文件,双击该文件,添加资源。2、使用资源文件点击.ui文件,就可以添加资源文件...
PyCharm关于TypeError: Required argument ‘mat‘ (pos 2) not found错误解决方法 PyCharm关于TypeError: Required argument ‘mat’ (pos 2) not found错误解决方法当运行以下代码:# Read in the imageimage = cv2.imread('airplane.jpg')image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)cv2.imshow("image",image)cv2.waitKey(0)cv2.destroyAllWindows()发现Pycharm报
Data Whale第20期组队学习 Pandas学习—第二次综合练习 Data Whale第20期组队学习 Pandas学习—第二次综合练习一、显卡日志二、水压站点的特征工程参考文献一、显卡日志下面给出了3090显卡的性能测评日志结果,每一条日志有如下结构:Benchmarking #2# #4# precision type #1##1# model average #2# time : #3# ms其中#1#代表的是模型名称,#2#的值为train(ing)或inference,表示训练状态或推断状态,#3#表示耗时,#4#表示精度,其中包含了float
Data Whale第20期组队学习 Pandas学习—时序数据 Data Whale第20期组队学习 Pandas学习—时序数据一、时序中的基本对象二、时间戳2.1 Timestamp的构造与属性2.2 Datetime序列的生成2.3 dt对象2.4 时间戳的切片与索引三、时间差3.1 Timedelta的生成3.2 Timedelta的运算四、 日期偏置4.1 Offset对象4.2 偏置字符串五、时序中的滑窗与分组5.1 滑动窗口5.2 重采样参考文献一、时序中的基本对象二、时间戳2.1 Timestamp的构造与属性2.2 Datetime序列的生成2
Data Whale第20期组队学习 Pandas学习—分类数据 Data Whale第20期组队学习 Pandas学习—分类数据一、cat对象1.1 cat对象的属性1.2 类别的增加、删除和修改二、有序分类2.1 序的建立2.2 排序和比较三、区间类别3.1 利用cut和qcut进行区间构造3.2 一般区间的构造3.3 区间的属性与方法参考文献一、cat对象1.1 cat对象的属性1.2 类别的增加、删除和修改二、有序分类2.1 序的建立2.2 排序和比较三、区间类别3.1 利用cut和qcut进行区间构造3.2 一般区间的构造3.3 区间的属
Data Whale第20期组队学习 Pandas学习—文本数据 Data Whale第20期组队学习 Pandas学习—文本数据一、str对象1.1 str对象的设计意图1.2 []索引器1.3 string类型二、正则表达式基础2.1 一般字符的匹配2.2 元字符基础2.3 简写字符集三、文本处理的五类操作3.1 拆分3.2 合并3.3 匹配3.4 替换3.5 提取四、常用字符串函数4.1 字母型函数4.2 数值型函数4.3 统计型函数4.4 格式型函数参考文献一、str对象1.1 str对象的设计意图1.2 []索引器1.3 string类型二、正则表达式
Data Whale第20期组队学习 Pandas学习—缺失数据 Data Whale第20期组队学习 Pandas学习—缺失数据一、缺失值的统计和删除1.1 统计缺失信息1.2 删除缺失信息二、缺失值的填充和插值2.1 利用fillna进行填充2.2 插值函数三、Nullable类型3.1 缺失记号及其缺陷3.2 Nullable类型的性质3.3 缺失数据的计算和分组参考文献Python中有三种缺失值(空值):类型说明NaNpandas使用浮点值NaN(Not a Number)表示缺失数值数据NApandas将缺失值表示为NA(not
Data Whale第20期组队学习 Pandas学习—连接 Data Whale第20期组队学习 Pandas学习—连接一、关系型连接1.1 连接的基本概念1.2 值连接1.3 索引连接二、方向连接2.1 concat2.2 序列与表的合并三、类连接操作3.1 比较3.2 组合一、关系型连接1.1 连接的基本概念1.2 值连接1.3 索引连接二、方向连接2.1 concat2.2 序列与表的合并三、类连接操作3.1 比较3.2 组合...
Data Whale第20期组队学习 Pandas学习—变形 Data Whale第20期组队学习 Pandas学习—变形一、长宽表的变形1.1 pivot1.2 pivot_table1.3 melt1.4 wide_to_long二、索引的变形2.1 stack与unstack2.2 聚合与变形的关系三、其他变形函数3.1 crosstab3.2 explode3.3 get_dummies参考文献一、长宽表的变形长表和宽表是对于某一个特征而言的,例如一个表中把性别存储在某一个列中,那么它就是关于性别的长表;如果把性别作为列名,列中的元素是某一其他的相关特征数
Data Whale第20期组队学习 Pandas学习—分组 Data Whale第20期组队学习 Pandas学习—分组一、groupby的基础操作1.1 聚合方法size()和count()二、聚合函数2.1 内置聚合函数2.2 agg方法三、变换和过滤3.1 变换函数与transform方法3.2 组索引与过滤四、 跨列分组4.1 apply的引入4.2 apply的使用参考文献任何分组(groupby)操作都涉及原始对象的以下操作:分割对象、应用一个函数和结合的结果。在许多情况下,任何分组(groupby)可以执行以下操作 :聚合 (计算汇总统计)、转换
Data Whale第20期组队学习 Pandas学习—索引 Pandas学习—索引索引1、.loc()2、.iloc()3、切片操作4、属性访问.参考文献索引Python和NumPy索引运算符"[]“和属性运算符”."可以快速轻松地访问Pandas数据结构。由于要访问的数据类型不是预先知道的,直接使用标准运算符具有一些限制。序号索引描述1.loc()基于标签2.iloc()基于整数3.ix()基于标签和整数,在0.20.0中不建议使用1、.loc().loc()主要基于标签(label)的,包括行标签(in
Data Whale第20期组队学习 Pandas学习—预备知识 Pandas学习——预备知识一、Python基础1.1 列表推导式和条件赋值1.2 匿名函数与map方法1.3 zip对象与enumerate方法二、Numpy基础2.1 使用numpy构造数组2.2 numpy 数组的变形和合并2.3 numpy数组的切片与索引2.4 numpy 常用函数2.5 向量与矩阵的计算三、编程实践一、Python基础1.1 列表推导式和条件赋值使用以下代码生成一个数字序列:num=[]def my_function(x): return x**3for i
Data Whale第20期组队学习 Pandas学习—基础知识 Pandas学习—基础知识一、Dataframe简介1.1 Pandas常见的数据类型1.2 创建Data Frames二、 Data Frame 基本操作2.1 添加一列三级目录一、Dataframe简介1.1 Pandas常见的数据类型数据结构维度说明Series1一维数组,等同于list,类似于Numpy中的arrayData Frames2二维的表格型数据结构Panel3三维数组,即Data Frames的容器1.2 创建Data Frame
Jetson nano 解决ImportError: cannot import name ‘_validate_lengths‘报错问题 使用Jetson nano运行分水岭算法代码过程中遇到ImportError: cannot import name '_validate_lengths’报错问题问题如图解决方法找到:/usr/lib/python3/dist-packages/skimage/util/arraycrop.py,打开.py文件,找到第177行,添加下面两个函数保存,重新加载即可消除错误,亲测有效。def _normalize_shape(ndarray, shape, cast_to_int=True):
Datawhale 第十九期 Numpy下 之 Task03:统计相关 Datawhale 第十九期 Numpy下 之 Task03:统计相关次序相关1 计算最小值2 计算最大值3 计算极差4 计算分位数5 计算中位数6 计算平均值7 计算加权平均值8 计算方差9 计算标准差10 计算协方差矩阵11 计算相关系数12 直方图三级目录次序相关1 计算最小值numpy.amin(a[, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue])import nump
Datawhale 第十九期 Numpy下 之 Task02:随机抽样 Datawhale 第十九期 Numpy下 之 Task02:随机抽样一、随机抽样简介二级目录三级目录一、随机抽样简介Numpy.random模块对Python内置的random进行了补充,增加了一些用于高效生成多种概率分布的样本值函数,比如正态分布、泊松分布等。二级目录三级目录...
Datawhale 第十九期 Numpy下 之 Task01:输入输出 Datawhale 第十九期 Numpy下 之 Task01:输入输出一、Numpy简介二、输入输出2.1 如何在numpy数组中只打印小数点后三位?2.2 如何限制numpy数组输出中打印的项目数?2.3 如何打印完整的numpy数组而不中断?一、Numpy简介Numpy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格(通常是元素是数字)。在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank)。NumPy的数组类被
Jetson Nano使用CSI摄像头教程(c++) Jetson Nano使用CSI摄像头教程(c++)一、 人脸检测二、读取CSI摄像头三、二维码检测和识读一、 人脸检测C++下开发Opencv需要进行一些额外的配置,先看一下opencv的文件位置。Jetson Nano预装的Opencv4.1.1的头文件位置如下图所示:库文件位置如下图所示:只需要在Qt的pro文件中将上述两个目录包含进来。另外注意头文件和lib文件的添加方法。QT的pro文件如下:QT -= gui CONFIG += c++11 consoleCONFIG -=
Jetson Nano使用CSI摄像头教程(python) Jetson Nano使用CSI摄像头教程(python))一、基于Opencv的人脸检测二、读取CSI摄像头三、二维码检测和识读一、基于Opencv的人脸检测首先编写一个python脚本用于检测图像中的人脸,使用Code OSS打开2.4.4节中创建的code文件夹,在该文件夹下新建一个python脚本,名为face_detect_test.py,代码如下所示:import cv2 filepath = "/home/hf1/Python_code/test.jpeg" #用绝对路径img =
DataWhale—16期组队学习—Task3:基于支持向量机的分类预测 Task3:基于支持向量机的分类预测1 支持向量机简介2 基于支持向量机的分类预测实践1 支持向量机简介在机器学习中,支持向量机(英语:support vector machine,常简称为SVM,又名支持向量网络[1])是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽
DataWhale—16期组队学习—Task2:基于决策树的分类预测 DataWhale—16期组队学习—Task2:基于决策树的分类预测1 决策树介绍2 决策树学习原理2.1 特征选择2.2 决策树生成2.3 决策树剪枝3 决策树算法3.1 ID3 算法3.2 C4.5 算法3.3 CART(Classification and Regression Tree)4 决策树分类预测实践1 决策树介绍决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概
DataWhale—16期组队学习—Task1:基于逻辑回归的分类预测 Task1:基于逻辑回归的分类预测1 逻辑回归的基本原理新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入1 逻辑回归的基本原理Logistic 回归是二分类任务中最常用的机器学习算法之一。它的设计思路简单,易于实现,可以
Python学习 Task9:文件与文件系统 Task9:文件与文件系统文件与文件系统1.1 打开文件1.2 文件对象方法1.3 简洁的 with 语句文件与文件系统1.1 打开文件open(file, mode=‘r’, buffering=None, encoding=None, errors=None, newline=None, closefd=True) Open file and return a stream. Raise OSError upon failure.a. file : 必需,文件路径(相对或者绝对路径)。b.
Python学习 Task8:模块与datetime模块 Task8:模块与datetime模块1、模块1.1 命名空间1.2 导入模块1.3 if __name__ == '__main__'2、datetime模块1、模块Python 提供了一个办法,把这些定义存放在文件中,为一些脚本或者交互式的解释器实例使用,这个文件被称为模块(Module)。模块是一个包含所有你定义的函数和变量的文件,其后缀名是 .py 。模块可以被别的程序引入,以使用该模块中的函数等功能。这也是使用 Python 标准库的方法。容器 -> 数据的封装函数 -> 语句
Python学习 Task6:函数 Task6:函数1、函数1.1 函数定义1.2 函数参数1.2.1 位置参数1.2.2 默认参数1.2.3 可变参数1.2.4 关键字参数1.2.5 命名关键字参数1.2.6 参数组合1.2.7 变量作用域2、Lambda表达式2.1 匿名函数的应用1、函数函数是一种可重复使用的,用来实现单一,或相关联功能的代码段。函数能提高应用的模块性,和代码的重复利用率。你已经知道Python提供了许多内建函数,比如print()。但你也可以自己创建函数,即用户自定义函数,Python 中“万物皆对象”,Pytho
Python学习 Task5:字典、集合和序列 Task5:字典、集合和序列1、字典1.1 访问字典1.2 修改字典1.3 删除字典元素1.4 字典的内置函数1.5 字典的内置方法2 集合2.11、字典序列是以连续的整数为索引,而字典以"关键字"为索引,关键字可以是任意不可变类型,通常用字符串或数值。字典是 Python 唯一的一个 映射类型,字符串、元组、列表属于序列类型。字典是另一种可变容器模型,且可存储任意类型对象。字典的每个键值 key=>value 对用冒号 : 分割,每个键值对之间用逗号 , 分割,整个字典包括在花括号 {} 中 ,
Python学习 Task4:列表、元组和字符串 Task4:列表、元组和字符串1、列表1.1 列表创建1.2 更改列表中的元素1.3 列表的常用操作符1.4 列表的其他常用方法2 元组2.1 访问元组2.2 修改元组2.3 删除元组2.4 解压元组3 字符串3.1 访问字符串3.2 字符串连接3.3 转义字符3.4 字符串格式化1、列表序列是Python中最基本的数据结构。序列中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推。列表是有序集合,没有固定大小,能够保存任意数量任意类型的 Python 对象,语法为
Python学习 Task3:异常处理 Task03:异常处理1、异常处理1.1 异常处理类别1.2 标准警告类别1.3 异常处理(try-except语句)1、异常处理异常就是运行期检测到的错误。计算机语言针对可能出现的错误定义了异常类型,某种错误引发对应的异常时,异常处理程序将被启动,从而恢复程序的正常运行。python提供了两个非常重要的功能来处理python程序在运行中出现的异常和错误。你可以使用该功能来调试python程序。1、异常处理2、断言(Assertions)1.1 异常处理类别BaseException:所有异常
Python学习 Task2:条件语句与循环语句 Task02:条件循环结构1、条件语句1.1 if语句1.2 if-else语句1.3 if-elif-else语句2、循环语句2.1 while循环2.2 while-else循环2.3 for循环2.4 for - else 循环2.5 range函数1、条件语句1.1 if语句if语句是通过一条或多条语句的执行结果 ( True 或者 False ) 有选择性的执行的代码块,在Python 语言中,任何非 0 和非空 ( null ) 值为 True,0 或者 null 为 False。Cre
Python学习 Task1 变量、运算符、数据类型及位运算 Task1 变量、运算符、数据类型及位运算Task1 变量、运算符、数据类型及位运算1、变量1.1 单变量赋值1.2 多变量赋值2 运算符2.1 算术运算符2.2 比较运算符2.3 逻辑运算符2.4 位运算符2.5 其他运算符3 基本数据类型3.1 整型3.2 浮点型3.3 布尔型4 位运算4.1 原码、反码和补码4.2 利用位运算实现快速计算4.3 利用位运算实现整数集合Task1 变量、运算符、数据类型及位运算1、变量Python 中变量赋值不需要类型声明。每个变量在内存中创建,都包括变量的标识,
第14期(六月)组队学习 Task3:Haar特征描述算子-人脸检测 Task3:Haar特征描述算子-人脸检测Haar特征描述算子-人脸检测1 Haar特征简介1.1 积分图1.1.1 积分图构建1.1.2 计算Haar特征值1.1.3 旋转矩形特征的计算1.1.4 AdaBoost分类器2 参考代码2.1 静态图像的人脸检测2.2 动态图像的人脸检测3 致谢Haar特征描述算子-人脸检测Haar特征是用于物体识别的一种数字图像特征,与哈尔小波转换极为相似,也是第一种即时的人脸检测运算;同时是一种用于目标检测或识别的图像特征描述子,通常和AdaBoost分类器组合使用,
第14期(六月)组队学习 Task2:LBP特征描述算子-人脸检测 LBP特征描述算子-人脸检测Task2:LBP特征描述算子-人脸检测1 LBP特征描述算子简介2 圆形LBP算子3 LBP算子旋转不变性及等价模式4 人脸检测流程5参考代码Task2:LBP特征描述算子-人脸检测1 LBP特征描述算子简介LBP(Local Binary Pattern)是一种用来描述图像局部特征的算子,具有灰度不变性和旋转不变性等优点。LBP可以用于人脸识别和目标检测,OpenCV中相关LBP特征进行人脸识别的接口,另外有LBP特征训练目标检测器的方法,虽然OpenCV实现了LBP特
第14期(六月)组队学习 Task1:Harris特征点检测器-兴趣点检测 Harris特征点检测器-兴趣点检测Harris特征点检测器-兴趣点检测1 简单介绍2 基本内容2.1 概念2.2 角点类型2.3 图像梯度3 Harris角点检测算法3.1 基本原理3.2 基本步骤3.3 代码实现3.4 结果显示Harris特征点检测器-兴趣点检测1 简单介绍1)特征点也称为兴趣点或者角点,是图像的重要特征之一,对图像图形的理解和分析有很重要的作用。2)点特征,主要指图像中的明显点,例如我们肉眼看到的突出的角点、边缘端点、极值点等。3)用于特征点提取的算子称为“兴趣点提取检测算
力扣的 柱状图中最大的矩形 解法 (Python3) 力扣的 柱状图中最大的矩形 解法 (Python3)题目描述:给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。求在该柱状图中,能够勾勒出来的矩形的最大面积。![以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。](https://img-blog.csdnimg.cn/20200330182912496.png?...
力扣的直线上最多的点数 解法 (Python3) 力扣的直线上最多的点数 解法 (Python3)题目描述:给定一个二维平面,平面上有 n 个点,求最多有多少个点在同一条直线上。示例 1:输入: [[1,1],[2,2],[3,3]]输出: 3解释:^|| o| o| o±------------>0 1 2 3 4示例 2:输入: [[1,1],[3,2],[5,3],[4,1...
力扣的排序链表解法(Python3) 力扣的排序链表解法(Python3)题目描述:在 O(n log n) 时间复杂度和常数级空间复杂度下,对链表进行排序。示例 1:输入: 4->2->1->3输出: 1->2->3->4示例 2:输入: -1->5->3->4->0输出: -1->0->3->4->5来源:力扣(LeetCode)...
力扣的 分割回文串 II 解法 (Python3) 力扣的 分割回文串 II 解法 (Python3)题目描述:给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。返回符合要求的最少分割次数。示例:输入: “aab”输出: 1解释: 进行一次分割就可将 s 分割成 [“aa”,“b”] 这样两个回文子串。来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/palind...
Datawhale & 天池二手车交易价格预测— Task5 模型融合 文章目录Datawhale & 天池二手车交易价格预测— Task5 模型融合Datawhale & 天池二手车交易价格预测— Task5 模型融合
Datawhale & 天池二手车交易价格预测— Task4 建模调参 Datawhale & 天池二手车交易价格预测— Task4 建模调参文章目录Datawhale & 天池二手车交易价格预测— Task4 建模调参1 学习目标2 相关内容3 线性回归&五折交叉验证&模拟真实业务情况3.1 线性回归3.2 五折交叉验证3.3 模拟真实业务情况1 学习目标了解常用的机器学习模型,并掌握机器学习模型的建模与调参流程2 相关内容...
Datawhale & 天池二手车交易价格预测— Task3 特征工程 Datawhale & 天池二手车交易价格预测— Task3 特征工程文章目录Datawhale & 天池二手车交易价格预测— Task3 特征工程特征工程1.简介2 代码参考2.1 异常处理2.2 特征标准化/归一化2.3 数据分桶2.4 缺失值处理2.5 特征构造2.6 特征筛选特征工程1.简介特征工程是进行数据挖掘的重要环节,包括处理异常值,特征归一化、标准化,数据分...
Datawhale &天池二手车交易价格预测— Task1 赛题理解 +Task2 数据分析 二手车交易价格预测— Task1 赛题理解 +Task2 数据分析文章目录:1 赛题理解二手车交易价格预测是Datawhale与天池联合发起的0基础入门系列赛事第一场 —— 零基础入门数据挖掘之二手车交易价格预测大赛。1.1 比赛目的赛题以二手车市场为背景,要求选手预测二手汽车的交易价格,这是一个典型的回归问题。通过这道赛题来引导大家走进AI数据竞赛的世界,主要针对于于竞赛新人进行自我...
力扣的通配符匹配 解法(Python3) 力扣的通配符匹配 解法题目描述:给定一个字符串 (s) 和一个字符模式 § ,实现一个支持 ‘?’ 和 ‘*’ 的通配符匹配。‘?’ 可以匹配任何单个字符。‘*’ 可以匹配任意字符串(包括空字符串)。两个字符串完全匹配才算匹配成功。说明:s 可能为空,且只包含从 a-z 的小写字母。p 可能为空,且只包含从 a-z 的小写字母,以及字符 ? 和 *。示例 1:输入:s = “...
力扣的加油站 解法(Python3) 力扣的加油站 解法题目描述:在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。说明:如果题目有解,该答案即为唯一答案。输入数组均为非空数组,且长...
力扣的跳跃游戏 解法(Python3) 力扣的跳跃游戏 解法题目描述:给定一个非负整数数组,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个位置。示例 1:输入: [2,3,1,1,4]输出: true解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。示例 2:输入: [3,2,1,0,4]输出: fal...
力扣的分发饼干解法(Python3) 力扣的分发饼干解法题目描述:假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i ,都有一个胃口值 gi ,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j ,都有一个尺寸 sj 。如果 sj >= gi ,我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。注意:...
力扣的判断子序列 解法(Python3) 力扣的判断子序列 解法题目描述:给定字符串 s 和 t ,判断 s 是否为 t 的子序列。你可以认为 s 和 t 中仅包含英文小写字母。字符串 t 可能会很长(长度 ~= 500,000),而 s 是个短字符串(长度 <=100)。字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"ae...
力扣的二叉树的中序遍历解法(Python3) 力扣的二叉树的中序遍历解法题目描述:给定一个二叉树,返回它的中序 遍历。示例:输入: [1,null,2,3]12/3输出: [1,3,2]进阶: 递归算法很简单,你可以通过迭代算法完成吗?来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/longest-substring-without-repeating-chara...
力扣的不同的二叉搜索树 II 解法 (Python3) 力扣的不同的二叉搜索树 II 解法题目描述:给定一个整数 n,生成所有由 1 … n 为节点所组成的二叉搜索树。示例:输入: 3输出:[[1,null,3,2],[3,2,null,1],[3,1,null,null,2],[2,1,3],[1,null,2,null,3]]解释:以上的输出对应以下 5 种不同结构的二叉搜索树:1 3 3 ...
力扣的恢复二叉搜索树 解法 (Python3) 力扣的恢复二叉搜索树 解法题目描述:二叉搜索树中的两个节点被错误地交换。请在不改变其结构的情况下,恢复这棵树。示例 1:输入: [1,3,null,null,2]1/32输出: [3,1,null,null,2]3/12示例 2:输入: [3,1,4,null,null,2]3/ 1 4/2输出: [2,1,4,null,null,3]2/ ...
力扣的买卖股票的最佳时机 II 解法 (Python3) 力扣的买卖股票的最佳时机 II 解法题目描述:给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。示例 1:输入: [7,1,5,3,6,4]输出: 7解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 ...
力扣的二叉树的最大深度解法(Python3) 力扣的二叉树的最大深度解法题目描述:给定一个二叉树,找出其最大深度。二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。说明: 叶子节点是指没有子节点的节点。示例:给定二叉树 [3,9,20,null,null,15,7],3/ 9 20/ 15 7返回它的最大深度 3 。来源:力扣(LeetCode)链接:https://leetcode-cn.com/...
力扣的对称二叉树解法(Python3) 力扣的对称二叉树解法题目描述:给定一个二叉树,检查它是否是镜像对称的。例如,二叉树 [1,2,2,3,4,4,3] 是对称的。1/ 2 2/ \ / 3 4 4 3但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:1/ 2 2\ 3 3说明:如果你可以运用递归和迭代两种方法解决这个问题,会很加分。来源于力扣参考...
力扣的相同的树解法(Python3) 力扣的相同的树解法题目描述:给定两个二叉树,编写一个函数来检验它们是否相同。如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。示例 1:输入: 1 1/ \ / 2 3 2 3 [1,2,3], [1,2,3]输出: true示例 2:输入: 1 1/ ...
力扣的正则表达式匹配解法(Python3) 力扣的正则表达式匹配解法题目描述:给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。‘.’ 匹配任意单个字符‘*’ 匹配零个或多个前面的那一个元素所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。说明:s 可能为空,且只包含从 a-z 的小写字母。p 可能为空,且只包含从 a-z 的小写字母,以及字符 . 和 *。示例 1:...
力扣的最长回文子串解法(Python3) 力扣的最长回文子串解法题目描述:给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。示例 1:输入: “babad”输出: “bab”注意: “aba” 也是一个有效答案。示例 2:输入: “cbbd”输出: “bb”来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/longest-pal...
力扣的无重复字符的最长子串解法 (Python3) 力扣的无重复字符的最长子串解法题目描述:给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。示例 1:输入: “abcabcbb”输出: 3解释: 因为无重复字符的最长子串是 “abc”,所以其长度为 3。示例 2:输入: “bbbbb”输出: 1解释: 因为无重复字符的最长子串是 “b”,所以其长度为 1。示例 3:输入: “pwwkew”输出: 3解释:...
力扣的有效的括号解法(Python3) 力扣的有效的括号解法题目描述:给定一个只包括 ‘(’,’)’,’{’,’}’,’[’,’]’ 的字符串,判断字符串是否有效。有效字符串需满足:左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。注意空字符串可被认为是有效字符串。示例 1:输入: “()”输出: true示例 2:输入: “()[]{}”输出: true示例 3:输入: “(]”输出: fal...
力扣的最长公共前缀解法(Python3) 力扣的最长公共前缀解法题目描述:编写一个函数来查找字符串数组中的最长公共前缀。如果不存在公共前缀,返回空字符串 “”。示例 1:输入: [“flower”,“flow”,“flight”]输出: “fl”示例 2:输入: [“dog”,“racecar”,“car”]输出: “”解释: 输入不存在公共前缀。说明:所有输入只包含小写字母 a-z 。来源:力扣(LeetCod...
力扣的罗马数字转整数解法(Python3) 力扣的罗马数字转整数解法题目描述:罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。字符 数值I 1V 5X 10L 50C 100D 500M 1000例如, 罗马数字 2 ...
力扣的合并K个排序链表解法(Python3) 力扣的合并K个排序链表解法题目描述:合并 k 个排序链表,返回合并后的排序链表。请分析和描述算法的复杂度。示例:输入:[1->4->5,1->3->4,2->6]输出: 1->1->2->3->4->4->5->6来源:力扣(LeetCode)链接:https://leetcode-cn.com/pro...
力扣的旋转图像解法 (Python3) 力扣的旋转图像解法题目描述:给定一个 n × n 的二维矩阵表示一个图像。将图像顺时针旋转 90 度。说明:你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。示例 1:给定 matrix =[[1,2,3],[4,5,6],[7,8,9]],原地旋转输入矩阵,使其变为:[[7,4,1],[8,5,2],[9,6,3]]...
力扣的接雨水解法(Python3) 力扣的接雨水解法题目描述:给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 感谢 Marcos 贡献此图。示例:输入: [0,1,0,2,1,0,1,3,2,1,2,1]输出: 6来源:力扣(L...
力扣的串联所有单词的子串解法(Python) 力扣的串联所有单词的子串解法题目描述:给定一个字符串 s 和一些长度相同的单词 words。找出 s 中恰好可以由 words 中所有单词串联形成的子串的起始位置。注意子串要与 words 中的单词完全匹配,中间不能有其他字符,但不需要考虑 words 中单词串联的顺序。示例 1:输入:s = “barfoothefoobarman”,words = [“foo”,“bar”]输出...
力扣的删除链表的倒数第N个节点解法(Python) 力扣的删除链表的倒数第N个节点解法题目描述:给定一个链表,删除链表的倒数第 n 个节点,并且返回链表的头结点。示例:给定一个链表: 1->2->3->4->5, 和 n = 2.当删除了倒数第二个节点后,链表变为 1->2->3->5.说明:给定的 n 保证是有效的。来源:力扣(LeetCode)链接:https://leetcode-c...
力扣的两数相加解法 (Python) 力扣的两数相加解法题目描述:给出两个 非空 的链表用来表示两个非负的整数。其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字。如果,我们将这两个数相加起来,则会返回一个新的链表来表示它们的和。您可以假设除了数字 0 之外,这两个数都不会以 0 开头。示例:输入:(2 -> 4 -> 3) + (5 -> 6 -> 4)输出:...
力扣的组合总和解法 (Python) 力扣的组合总和解法题目描述:给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的数字可以无限制重复被选取。说明:所有数字(包括 target)都是正整数。解集不能包含重复的组合。示例 1:输入: candidates = [2,3,6,7], target =...
力扣的电话号码的字母组合解法(Python) 力扣的电话号码的字母组合解法题目描述:给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。示例:输入:“23”输出:[“ad”, “ae”, “af”, “bd”, “be”, “bf”, “cd”, “ce”, “cf”].说明:尽管上面的答案是按字典序排列的,但是你可以任意选择答案输出的顺序。...
力扣的盛最多水的容器解法 (Python) 力扣的盛最多水的容器解法题目描述:给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。说明:你不能倾斜容器,且 n 的值至少为 2。图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。...
力扣的环形链表解法 (Python) 力扣的环形链表解法题目描述:给定一个链表,判断链表中是否有环。为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。示例 1:输入:head = [3,2,0,-4], pos = 1输出:true解释:链表中有一个环,其尾部连接到第二个节点。示例 2:输入:head = [1,2], po...
力扣的删除排序链表中的重复元素解法 (Python3) 力扣的删除排序链表中的重复元素解法题目描述:给定一个排序链表,删除所有重复的元素,使得每个元素只出现一次。示例 1:输入: 1->1->2输出: 1->2示例 2:输入: 1->1->2->3->3输出: 1->2->3来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/re...
LeetCode 合并两个有序链表 解法 (Python) LeetCode 合并两个有序链表 解法题目描述:将两个有序链表合并为一个新的有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。示例:输入:1->2->4, 1->3->4输出:1->1->2->3->4->4来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/mer...
力扣的买卖股票的最佳时机 III之解法(Python3) 力扣的买卖股票的最佳时机 III之解法题目描述:给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。示例 1:输入: [3,3,5,0,0,3,1,4]输出: 6解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股...
力扣的最接近的三数之和解法(Python3) 力扣的最接近的三数之和解法题目描述:给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。例如,给定数组 nums = [-1,2,1,-4], 和 target = 1.与 target 最接近的三个数的和为 2. (-1 + 2 + 1 = 2).参考程...
力扣的三数之和解法(Python3) 力扣的三数之和解法(Python3)题目描述:定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?找出所有满足条件且不重复的三元组。注意:答案中不可以包含重复的三元组。示例:给定数组 nums = [-1, 0, 1, 2, -1, -4],满足要求的三元组集合为:[[-1, 0, 1],[-1, -1, ...
力扣的移除元素 解法 Python3 力扣(LeetCode 27)移除元素题目描述:给定一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,返回移除后数组的新长度。不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成。元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。示例 1:给定 nums = [3,2,2,3], val = 3,函数应该返...
力扣的删除排序数组中的重复项解法(python) 力扣的删除排序数组中的重复项解法描述:给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度。不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成。示例 1:给定数组 nums = [1,1,2],函数应该返回新的长度 2, 并且原数组 nums 的前两个元素被修改为 1, 2。你不需要考虑数组中超出新长度后...
力扣的两数之和解法(python3) 力扣->两数之和题目:给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。你可以假设每种输入只会对应一个答案。但是,你不能重复利用这个数组中同样的元素。示例:给定 nums = [2, 7, 11, 15], target = 9因为 nums[0] + nums[1] = 2 + 7 = 9所以返回 [0,...