我们都知道最小生成树,那么次小生成树就是:T0是任一棵异于T的生成树,通过变换T0 --> T1 --> T2 --> ... --> Tn (T) 变成最小生成树。所谓的变换是,每次把Ti中的某条边换成T中的一条边, 而且树T(i+1)的权小于等于Ti的权。取T0为任一棵次小生成树,T(n-1) 也就是次小生成树且跟T差一条边。
此博客有详解:http://www.cnblogs.com/hxsyl/p/3290832.html
这样的话,就很好办了,本题是问是否存在不唯一的最小生成树。意味着权值相同而某一条边不同。所我们把最小生成树的每一条边遍历,用其它边代替这条边。求得cMST,若和MST相同则说明不唯一。
注意:变量很多,定义的位置要好好思考。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
class Node
{
public:
int s,e,v;
}edge[10005];
int f[105],num[105];
int a[105];
int n,m;
bool cmp(Node x,Node y)
{
return x.v < y.v;
}
int Find(int x)
{
if(f[x] == x)
return x;
else
f[x] = Find(f[x]);
return f[x];
}
int Union(int x,int y)
{
int a = Find(x);
int b = Find(y);
if(a == b)
return 0;
else if(num[a] >= num[b]){
f[b] = a;
num[a] += num[b];
}else {
f[a] = b;
num[b] += num[a];
}
return 1;
}
int kruskal()
{
for(int i = 1;i <= n; i++){
f[i] = i;
num[i] = 1;
a[i] = 0;
}
sort(edge+1,edge+m+1,cmp);
int pos = 1;
int mst = 0;
for(int i = 1;i <= m; i++){
if(Union(edge[i].s,edge[i].e)){
a[pos++] = i; //保存最小树的n-1个边
mst += edge[i].v;
}
if(pos == n)
break;
}
int cmst,temp = 0x3f3f3f3f;
for(int i = 1;i <= n - 1; i++){ //遍历n-1次
for(int j = 1;j <= n; j++){
num[j] = 1;
f[j] = j;
}
pos = 1;
cmst = 0;
for(int j = 1;j <= m; j++){
if(a[i] == j)
continue;
if(Union(edge[j].s,edge[j].e)){
cmst += edge[j].v;
pos++;
}
if(pos == n)
break;
}
if(pos == n && temp > cmst)
temp = cmst;
}
if(temp != mst)
return mst;
else
return -1;
}
int main()
{
// freopen("in.txt","r",stdin);
int ncase;
cin>>ncase;
while(ncase--){
cin>>n>>m;
for(int i = 1;i <= m; i++)
cin>>edge[i].s>>edge[i].e>>edge[i].v;
int ans = kruskal();
if(ans != -1) //注意要用负数
cout<<ans<<endl;
else
cout<<"Not Unique!"<<endl;
}
return 0;
}