POJ 2342 (树dp)

本文介绍了一个关于派对邀请的最大趣味值问题,并通过树形动态规划的方法解决了该问题。考虑到邀请的人中不能存在直接上下级关系,文章详细阐述了如何利用递归进行状态转移,最终求得最大趣味值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

一个公司要开party,想要邀请很多人来,每一个人来都代表着有趣值,但是如果有两
人是直接上下级的关系,则不允许。求出最大funny值。

思路:

关系是以树的形式给出,适合树dp。。。那么怎么想呢?考虑这种状态,一个人去,
则其直接子节点不去,如果他去,其直接子节点可去,可不去。
好吧!其实状态已经给出了。具体看代码。

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>

using namespace std;

const int MAXN = 60005;

int n;
vector<int >G[MAXN];
int w[MAXN],dp[MAXN][2];

int dfs(int x,int s,int fa)
{
    if(dp[x][s] != -1)
        return dp[x][s];
    dp[x][s] = 0;
    if(s) {
        dp[x][s] = w[x];
        int size = G[x].size();
        for(int i = 0;i < size; i++) {
            if(G[x][i] != fa) {
                dp[x][s] += dfs(G[x][i],0,x);
            }
        }
    }
    else {
        int size = G[x].size();
        for(int i = 0;i < size; i++) {
            if(G[x][i] != fa) {
                dp[x][s] += max(dfs(G[x][i],1,x),dfs(G[x][i],0,x));
            }
        }
    }
    return dp[x][s];
}

int main()
{
    //freopen("in.txt","r",stdin);
    while(scanf("%d",&n) != EOF) {
        memset(dp,-1,sizeof(dp));
        for(int i = 1;i <= n; i++)
            G[i].clear();
        for(int i = 1;i <= n; i++)
            scanf("%d",&w[i]);
        int s,e;
        while(scanf("%d%d",&s,&e) != EOF) {
            if(s == 0 && e == 0)
                break;
            G[s].push_back(e);
            G[e].push_back(s);
        }
        printf("%d\n",max(dfs(1,1,-1),dfs(1,0,-1)));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值