LeetCodeBinaryWeeklyContest-24

R a n k : 1264 / 1898 A C : 1 / 4 Rank:1264 / 1898 \quad AC:1/4 Rank:1264/1898AC:1/4

1413. 逐步求和得到正数的最小值

求个前缀和即可

class Solution {
public:
    int minStartValue(vector<int>& nums) {
        int n = nums.size();
        int pre[n],minv = nums[0];
        pre[0] = nums[0];
        for(int i=1;i<n;i++){
            pre[i]= pre[i-1]+nums[i];
            minv = min(minv,pre[i]);
        }
        int res = 1;
        for(;;res++){
            if(res+minv>=1) return res;
        }
        return res;
    }
};

1414. 和为 K 的最少斐波那契数字数目

贪心构造吧,现把表打出来,然后从后向前遍历
证明参考:和为 K 的最少斐波那契数字数目

class Solution {
public:
    int findMinFibonacciNumbers(int k) {
        int f[44],res = 0;
        f[0] = f[1] = 1;
        for(int i=2;i<44;i++){
            f[i] = f[i-1]+f[i-2];
        }
        for(int i=43;i>=0;i--){
            if(f[i]<= k){
                res ++;
                k -= f[i];
            }
        }
        return res;
    }
};

1415. 长度为 n 的开心字符串中字典序第 k 小的字符串

回溯写法,不过说实话我到现在也没搞清楚为啥 我注释的地方为啥就不行会报超内存…

class Solution {
public:
    vector<string> res;
    void dfs(string s,int n){
        if(s.size()==n){
            res.push_back(s);
            return ;
        }
        else {
            for(char c='a';c<='c';c++){
                if(s.length()==0||c!=s.back()){
                    /* ******AC写法********/
                    dfs(s+c,n);
                    /* ******有问题的写法********/
                    // s += c;
                    // dfs(s,n);
                    /* **************/

                }
            }
        }
    }
    string getHappyString(int n, int k) {
        dfs("",n);
        if(res.size()<k) return "";
        return res[k-1];
    }
};

1416. 恢复数组

主要是处理前导0,比较繁杂,思路是从右到左动态规划,dp[i]表示s[i:]能表示的方案数
d p [ i ] = d p [ i ] + d p [ j + 1 ] i < = j < n dp[i] = dp[i] + dp[j+1] \quad i<=j<n dp[i]=dp[i]+dp[j+1]i<=j<n
参考:处理的很难受?从右向左动规吧

class Solution {
public:
    const int mod = 1e9+7;
    int numberOfArrays(string s, int k) {
        int n = s.length();
        long long dp[n+1];
        memset(dp,0,sizeof(dp));
        dp[n] = 1;
        for(int i=n-1;i>=0;i--){
            if(s[i]=='0'){
                dp[i] = 0;
                // 会出现前导0
                continue;
            }
            long long tmp = 0;
            for(int j=i;j<n;j++){
                tmp = tmp*10 + s[j]-'0';
                if(tmp>k) break;
                else {
                    dp[i] = (dp[i]+dp[j+1])%mod;
                }
            }
        }
        return (int)dp[0];
    }
};

时间复杂度: O ( n 2 ) O(n^2) O(n2), 空间复杂度: O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值