TOYS
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 16340 | Accepted: 7837 |
Description
Calculate the number of toys that land in each bin of a partitioned toy box.
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.
John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box.
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.
John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box.
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.
Input
The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.
Output
The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.
Sample Input
5 6 0 10 60 0 3 1 4 3 6 8 10 10 15 30 1 5 2 1 2 8 5 5 40 10 7 9 4 10 0 10 100 0 20 20 40 40 60 60 80 80 5 10 15 10 25 10 35 10 45 10 55 10 65 10 75 10 85 10 95 10 0
Sample Output
0: 2 1: 1 2: 1 3: 1 4: 0 5: 1 0: 2 1: 2 2: 2 3: 2 4: 2
分析:利用三角形的向量面积公式[ (x1-x3)*(y2-y3)-(y1-y3)*(x2-x3) ] / 2 这里三角形的三个点,顺时针带入得到负值,逆时针带入得到正值。通过这一点,判断在哪一个格子中,统计每一个点的位置。
这里解释一下这个公式的由来,见下图
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std;
struct Node {
int x,y;
}edge[5005],node[5005];
int ans[5005];
int calc(int xA,int yA,int xB,int yB,int xC,int yC)
{
return (xA-xC)*(yB-yC)-(yA-yC)*(xB-xC);
}
int judge(int a,int b,int y1,int y2)
{
if(calc(edge[b].x,y1,edge[b].y,y2,node[a].x,node[a].y)>0 && calc(edge[b+1].x,y1,edge[b+1].y,y2,node[a].x,node[a].y)<0)
return 1;
return 0;
}
int main()
{
int n,m,x1,y1,x2,y2;
int inde=0;
while(scanf("%d",&n),n)
{
if(inde)
printf("\n");
inde++;
memset(ans,0,sizeof(ans));
scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
edge[0].x=edge[0].y=x1;
edge[n+1].x=edge[n+1].y=x2;
for(int i=1;i<=n;i++)
scanf("%d%d",&edge[i].x,&edge[i].y);
for(int i=0;i<m;i++)
scanf("%d%d",&node[i].x,&node[i].y);
for(int i=0;i<m;i++)
{
for(int j=0;j<n+1;j++)
{
if(judge(i,j,y1,y2))
ans[j]++;
}
}
for(int i=0;i<=n;i++)
printf("%d: %d\n",i,ans[i]);
}
return 0;
}