MNIST中的数据格式

trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])

1.transforms.Normalize((0.1307,), (0.3081,))为:

归一化操作,其中由于MNIST数据集为单通道图像,那么分别只有一个均值和一个标准差(一般的图像会有三个通道,代表三原色)。

transforms.Normalize(mean,std)的计算公式是:

input = \frac{input-mean}{std}

2.transforms.ToTensor()为:

将0-255的像素转换为0-1的值,对后续的神经网络处理有利

如原始的输入图像矩阵格式为(349, 500, 3),通过转换后(3, 349, 500)

3.transforms.Compose()

管理其中的一系列transforms操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值