- 博客(358)
- 资源 (4)
- 收藏
- 关注
原创 报错:no matching host key type found
服务器只支持较老的加密算法(如 ssh-rsa 或 ssh-dss),而本地客户端由于安全原因默认禁用了这些算法。因此,客户端无法与服务器协商成功。找到路径下config文件,添加以下配置在开头后保存文件。(如果没有config文件,则新建即可)方案一,在命令行中强制启用旧的加密算法,比如scp命令中。可能发生在scp或其他方式连接服务器时。在终端输入命令open ~/.ssh。方案二:修改ssh文件。
2025-02-08 11:41:38
203
原创 多分类交叉熵与稀疏分类交叉熵
稀疏分类交叉熵内部会将整数标签转换为 One-hot 编码,而如果标签已经是 One-hot 编码的形式,再使用稀疏分类交叉熵就会多此一举。假设我们有三个类别:A、B 和 C。对于某个样本,其真实标签为 B。其中 y 是真实标签的整数值,在这个算例中,真实标签为B,模型输出的预测概率q(B)=0.7。其中p是真实分布(One-hot 编码),q是预测分布,那么预测概率的向量为。
2024-12-12 14:37:49
198
原创 【工程】时序相似性测量-流数据+分布式系统
范数和基于相关性的距离提供了精确的增量表达式,内存消耗最小,计算工作量也小。相比之下,基于ESM(弹性相似性度量) 的计算复杂性使得在处理长时间序列时计算量较大,然而基于esm的算法效果确实比其他的好。在线设置中时间序列之间相似性的主要度量:基于形状的模型,这些 ESM 之间的基本差异在于它们可以处理的。文献[1]在流数据中实现dtw,所用数据是心电图。) 和带实数惩罚的编辑距离 (ERP。要么减少学习方法中的 ESM 计算次数。)、实数序列编辑距离 (EDR。,要么加快 ESM 计算本身。
2024-12-03 10:26:29
46
原创 时间序列相似性综述
陈海燕,刘晨晖,孙博.时间序列数据挖掘的相似性度量综述[J].控制与决策,2017,32(01):1-11.DOI:10.13195/j.kzyjc.2016.0462.孙冬璞,曲丽.时间序列特征表示与相似性度量研究综述[J].计算机科学与探索,2021,15(02):195-205.背景:数据分析前,如果能舍弃相似度偏低的序列数据,能够提高后续分析的精度和效率。
2024-12-02 15:19:35
76
原创 【基于规则】n-sigma
假设我们有一组数据,其均值为μ,标准差为σ。若z=1.2,说明该数据点在1σ和2σ之间(位于均值 μ 加上 1.2 个标准差)这称为68-95-99.7法则(Empirical Rule)。
2024-11-25 15:02:02
84
原创 【基于规则】滑动平均
加权移动平均给固定跨越期限内的每个变量值以相等的权重。其原理是:历史各期产品需求的数据信息对预测未来期内的需求量的作用是不一样的。除了以 n 为周期性变化外,远离目标期的变量值的影响力相对较低,故应给予较低的权重。(一次移动平均法)是收集一组观察值,计算这组观察值的均值,利用这个均值作为下一期的预测值。
2024-11-25 14:54:02
51
原创 【基于规则】余弦相似度
把时序数据看作高维向量(连续函数看作连续无穷维向量),衡量两个向量之间的夹角,忽略其幅值特点。基于点乘,观察者(基)足够多,能够围观到真相。在数学上,本质还是求两条曲线之间的面积,和基于距离中的某些方法是异曲同工之妙。上方为正,下方为负,
2024-11-25 14:23:53
34
原创 小波变换/去噪
基于傅立叶变换可用于去噪等采用塔式分解,能够同时得到时间和频率的信息,小波就是一系列的观察者,算法效果取决于选取的小波种类、选取的分量(峭度)
2024-11-22 16:11:13
46
原创 dropout层/暂退法
Hinton 的这个灵感来自银行的防欺诈机制。他去银行办理业务时,发现柜员不停地换人。他就猜想,银行工作人员要想成功欺诈银行,他们之间要互相合作才行,因此一个柜员不能在同一个岗位待得过久。这让他意识到,在某些神经网络层中的各个神经元之间的参数可能也是针对训练数据集形成了某种“固定套路”,那么,随机删除一部分神经元,就有可能打破这些套路,阻止它们的“阴谋”,从而降低过拟合。正则化的目的是为了让模型粗糙一点儿,不要过分追求完美。作用:正则化,缓解过拟合。
2024-11-18 16:59:45
355
原创 数据增强概念
实际上,这也可以理解成减少模型的复杂度:不希望学习到一个过于复杂的模型去细化区分同一个目标(如猫)在经过平移、旋转、形变之后与“原样”的不同,而是只追求对其进行粗粒度的分类(如只要识别出猫、狗这些物种种类别)。在这个目标下,进行上述的变换是不影响人们对其类别判断的,所以这些变换可以看作约束模型学习到相应的“不变性”。即不变性是人赋予的一种主观属性。这种约束实际上是为了保证学习出的模型具有更强的泛化性或鲁棒性,以减少过拟合的情形。如果相应的变换操作对特定任务不能保证一定的”不变性“,就不能提高模型泛化性。
2024-11-18 16:48:00
53
原创 【大模型】训练-知识蒸馏
因此,我们可以先训练好一个teacher网络,然后将teacher的网络的输出结果 q作为student网络的目标,训练student网络,使得student网络的结果p 接近 q。软标签蒸馏:教师模型生成的预测概率分布(软标签)用于指导学生模型的训练,而不仅仅是原始的硬标签。思想:用大模型指导小模型训练,将大模型的知识迁移到小模型上,使得小模型减少即使算资源的同时尽量接近大模型的性能。关系蒸馏:教师模型的样本之间的关系用于指导学生模型的训练。特征蒸馏:教师模型的中间层特征用于指导学生模型的训练。
2024-11-06 15:43:33
330
原创 efficient teacher
如果我们只保留分数高于某个阈值的伪标签,这可能导致模型越来越偏向于生成高分数的伪标签,因为这些高分数的伪标签在训练过程中会得到强化(它们被认为是"正确"的)。而单阶段的检测器,这种基于学生-教师相互学习的机制会导致其在整个训练过程中难以稳定的训练,即教师模型生成的伪标签的数量和质量波动很大,其产生的不合格伪标签便会持续误导模型的更新。这个过程中,我们也少量标注了一些新的验证集来验证半监督训练的效果,原因是半监督训练往往不太影响模型在原有验证集上的表现,而是加强模型在分布外验证集上的效果。
2024-11-06 15:43:06
1031
原创 使用Pytorch Geometric建立异构图HeteroData数据集
点和边对应的值(如[1,3] 或 torch.randn(1,2))会各自存在stores和edges_stores下,一般存储的类型是tensor,这里为了方便对比学习,在这用了一个数组。类似字典,.point会使得data内部的keys增一个'point',key叫什么可以自己定义。data['user']会使得data内部node_types增加'user'
2024-11-06 15:42:17
353
原创 半监督基本概念
平滑假设(smoothness assumption):如果两个样本在输入空间中相似,其标签也应该相似;聚类假设(low-density assumption):当两个样例位于同一聚类簇时,很大的概率下有相同的类标签。聚类假设也可以被视为低密度分离假设,即:给定的决策边界位于低密度地区。流形假设(manifold assumption):同一个低维流形(manifold)上的样本应该包含相同的标签;
2024-11-06 15:41:32
62
原创 OCSVM单类支持向量机-异常检测-原理及代码复现
它是支持向量机(SVM)的一个变体,专门设计用于处理只有一个类别的训练数据的情况,通常用于标记为“正常”或“正常”的样本。:算法寻找一个超平面,该超平面将大部分正常样本包围在其一侧,并尽量远离原点。这个超平面可以通过最大化正常数据点到超平面的距离来实现。:通过设置一个阈值,来判断新的样本是否属于正常类别。如果样本落在决策边界的外部,它就被认为是异常样本。:单类 SVM 首先将输入数据映射到高维特征空间,以便更好地捕捉数据的分布特点。
2024-11-04 10:29:33
583
原创 lof 局部离群因子-异常检测-原理及代码复现
LOF 值是通过比较一个点的局部可达密度与其邻居的局部可达密度来计算的。LOF 值越高,表示该点相对于其邻居的密度越低,越有可能是离群点。:计算每个点与其邻域中其他点的可达距离。可达距离是指从一个点到其邻居的距离,通常是考虑到邻域内的密度的影响。:对于每个数据点,首先确定其 k 个最近邻(k-nearest neighbors)。LOF 算法通过比较数据点与其邻近点的密度来判断一个点是否为离群点。:对每个点计算其局部可达密度,表示在其邻域内的点的密度。
2024-11-04 10:26:09
146
原创 runner,hook介绍
当涉及到深度学习框架,例如 MMDetection 或其他 MM 系列工具,runner可以看作是训练过程的核心管理器,它负责模型的训练循环、评估以及与训练相关的各种事务。简单来说,当 runner“运行”,它会开始一个训练循环,迭代数据,前向传播、后向传播并更新模型权重。
2024-11-04 10:22:51
52
原创 电网优化问题定义-入门
由于正常写出得交流潮流方程组是非凸的,所以要对其进行一定的松弛才能保证模型可解。在输电网中由于电阻远小于电抗,因此松弛过程中忽略了,电阻的影响,也不考虑无功分布的影响,因此把这种松弛后的潮流方程叫做直流潮流。直流潮流是线性的。在配电网中电阻与电抗接近,因此不能忽略电阻的影响,同时考虑电阻和电抗的影响的潮流方程叫做交流潮流。交流潮流的变种之一是distflow。交流潮流是非线性,并且非凸。
2024-11-04 10:16:57
319
原创 扩散模型 diffusion model
希望得到这样一个模型,输入第 t 步加噪结果和时间步 t,预测从第 t-1 步到第 t 步噪声值。因为噪声值和输入图的分辨率是一致的,而 UNet 模型常用于图像分割任务,输入输出的分辨率相同,使用 UNet 来完成这个任务再合适不过了。每一步的加噪结果仅依赖于上一步的加噪结果和一个加噪过程,而这个加噪过程依赖于当前时间步 t,因此整个加噪过程可以看成参数化的马尔科夫链。马尔可夫链:数学模型,用于描述随机事件的序列,其中每个事件的概率仅取决于上一个事件的状态,而与过去的事件无关。随机生成一个高斯噪声。
2024-11-04 10:12:43
482
原创 【3D】基础概念
和。您可以将 blender 与 cinema4d、lightwave、3DStudioMax、SoftimageXSI、Maya 或 Modo 进行比较,但 Plasticity 必须与 Moi3D、Fusion360°、Freecad、ViaCad、Rhino、Shapr3D 进行比较......它只是一个迷你 CAD 工具。
2024-11-04 10:10:33
601
原创 数据库连接池
直接访问数据库中的数据,每一次数据访问请求都必须经历建立数据库连接、打开数据库、存取数据和关闭数据库连接等步骤,而连接并打开数据库是一件既消耗资源又费时的工作,如果频繁发生这种数据库操作,系统的性能必然会急剧下降,甚至会导致系统崩溃。将数据库连接作为对象存储在一个Vector对象中,一旦数据库连接建立后,不同的数据库访问请求就可以共享这些连接,技术是解决这个问题最常用的方法。DAL 队列服务+连接池。在WEB应用系统中,如果。
2024-11-04 10:03:41
211
原创 电脑硬件介绍(cpu与gpu/内存与硬盘的区别)
两者都是与计算有关的处理器。如果你只是日常办公,往往不需要独立的gpu。相比一张小小的cpu芯片,gpu通常是一个大砖头,gpu更擅长并行计算任务。在并行计算任务下,处理器可能需要同时处理大量的独立数据项。由于这些数据项是独立的,因此并不需要(也不能)共享缓存。相反,更重要的是能够同时进行大量的计算,这就是GPU设计为拥有大量的计算核心的原因。
2024-11-04 09:57:40
451
原创 概率
当置信区间越窄时,我们对参数的估计通常是更精确的。更宽的置信区间可能是由于较高的置信水平、较大的样本标准差或较小的样本大小导致的。两个人轮流丢硬币,第一个扔到正面的人获胜,请问先丢的人胜率是多少?服从均匀分布的随机变量在其定义域内的所有值都有相同的概率。更宽的置信区间表示对参数的估计更准确(关于假设检验,以下哪些说法是正确的?假设检验的结果可能受到样本大小的影响。关于置信区间,以下哪些说法是正确的?关于概率分布,以下哪些说法是正确的。关于假设检验,以下哪些说法是正确的。假设检验的结果可以证明原假设是真的。
2024-11-04 09:43:01
30
原创 GNN
区别是消息传递机制不同,然而无论是哪种机制,其核心目的都是转化原始图,获得能够更好体现图的表示。例如,我们可以使用独热编码来表示性别和兴趣爱好,将其转换为二进制向量形式。可以看到,原始的向量表示,不能体现节点与其他节点之间的连接关系,因此我们希望进一步处理来获取能够体现他们相似性的表示。更新(Update);GNN 是可以直接应用于图形的神经网络,并提供了一种执行节点级、边缘级和图级预测任务的简单方法。上面的例子类似最简单的原始gnn,原始gnn采用sum求和传递机制。gnn输入是图,输出是更新后的图。
2024-10-31 14:22:08
295
原创 逻辑回归logistics regression
我们将这些参数和第一个样本的特征值代入模型,可以得到 p=0.5,与真实标签 y=0 的差距较大,因此我们需要调整参数。但是,逻辑回归也有其局限性,例如它假设特征和标签之间是线性关系,无法处理复杂的非线性关系。它的工作原理基于逻辑函数(或称为 sigmoid 函数),该函数的输出在0到1之间,可以解释为概率。,其中 w1 和 w2 是权重,b 是偏置项,这些都是模型需要学习的参数。假设我们有一个二分类问题,每个样本有两个特征 (x1, x2),标签为 y,我们希望基于这些特征来预测 y。
2024-10-31 14:21:40
387
原创 RCNN系列0:入门
当图像有很多物体,需要进行 多物体识别+定位多个物体 时,就不能再把这个任务看作分类问题,因为这么做需要找很多位置, 给很多个不同大小的框,你还需要对框内的图像分类。因此有人提出的方法,预先找出图中目标可能出现的位置,即候选区域(Region Proposal)。利用图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千甚至几百)的情况下保持较高的召回率(Recall)
2024-10-31 14:16:54
154
coco数据集转yolo格式,自己转的(和yolov1.0提供的不太一样)
2023-04-28
ISBI 2015 数据集(下)
2022-05-25
ISBI 2015 数据集(上)
2022-05-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人