- 博客(259)
- 资源 (4)
- 收藏
- 关注
原创 SIFT尺度不变特征变换
SIFT(Scale-Invariant Feature Transform)是一种用于图像处理和计算机视觉中的特征提取和匹配的算法。它的主要优点是对图像的尺度、旋转和亮度变化具有较强的鲁棒性。
2023-11-27 12:42:29
69
原创 arcmap / arcgis 安装教程
检查安装路径:右键点击MapGIS图标,打开文件所在位置,本人位置为D:/Program Files(x86)/ArcGIS/Desktop10.2/Help/zh-CN , 将语言包文件复制粘贴在这个目录下,并运行安装(!重新安装前一定要先卸载了之前安装的汉化包——右键安装包,卸载即可)
2023-11-09 09:45:00
286
原创 python常用stl
注意 列表也可以像数组一样x[i], 但前提是列表非空(初始化过),否则会报错。的每个元素中提取用于比较的键,默认为。:指定带有单个参数的函数,用于从。关键字开头,后跟逗号分隔的。lambda 函数以。
2023-10-10 21:44:17
120
原创 C++特性:继承,封装,多态
类把⾃⼰的数据和⽅法只让可信的类或者对象操作,对不可信的进⾏隐藏,如:将公共的数据或⽅法使⽤public修饰,⽽不希望被访问的数据或⽅法采⽤private修饰。
2023-10-10 16:02:20
568
原创 new,malloc
newmallocnewmallocvoid*newmallocNULLnewdeletedelete[]mallocfreenewdeletemallocfreenewdeletemallocfreemalloc和free更原始,更接近底层。在C++中,通常建议使用new。
2023-10-10 15:45:14
40
原创 hook回调函数
当发生特定的事件(例如,一个 epoch 的结束)或满足某些条件(例如,达到一定的迭代次数)时,框架会自动检查是否有为这些事件或条件注册的回调函数,并按照注册的顺序调用它们。这种模式提供了极大的灵活性,因为它允许开发者插入自定义的逻辑,而不必修改框架的内部代码。例如,你可以很容易地为模型的训练过程添加自定义的日志记录、模型保存或其他功能,而不必更改训练循环的实际代码。在很多编程框架和库中,特别是那些涉及事件驱动或生命周期管理的库,"hook" 是一个常见的概念。
2023-10-09 19:27:56
61
原创 常用时序模型
RNN (Recurrent Neural Network):GRU (Gated Recurrent Unit):LSTM (Long Short-Term Memory):Transformer:以搜广推为例:滚动滑窗采样:不均匀滑窗采样:过采样 (Oversampling):下采样 (Undersampling):权重调整:时间上下文采样:合成样本生成 (SMOTE: Synthetic Minority Over-sampling Technique):聚类:
2023-10-07 11:52:40
293
原创 NLP大模型
收集上述预训练语言模型 产生的数据来训练一个奖励模型,这个模型可以看作一个判别式的语言模型,输入是prompt和模型的回答,输出是人类的满意度,但是这里标注人员的任务是对生成的回答进行排序,比如说给定同一个prompt,让两个语言模型同时生成文本,然后比较这两段文本哪个好。给每个任务定义自己的Prompt,拼接到数据上作为输入,同时freeze预训练模型进行训练,在没有加额外层的情况下,随着模型体积增大,Prompt-tuning的效果越来越好,最终追上精调的效果。[2] 用代码进行预训练。
2023-10-07 11:39:36
410
原创 NLP:Attention和self-attention的区别
也就是说,查询、键、和值都来自于同一个地方,即输入序列和输出序列是相同的,即模型在生成每一个输出时都对自己的所有输入(包括自己)进行加权求和。核心思想是根据不同的上下文为不同的信息分配不同的注意力权重。2. Q,K,V需要遵循attention的做法。1. Q=K=V(同源)
2023-10-07 11:35:59
407
原创 优化器optimizer
用来更新和计算影响模型训练和模型输出的网络参数,使其逼近或达到最优值,从而最小化(或最大化)损失函数。总结从SGD到Adam做了哪些改进自适应的学习率、动量从SGD到Adam做了哪些改进Adamw 即 Adam + weight decate ,效果与 Adam + L2正则化相同,但是计算效率更高,因为L2正则化需要在loss中加入正则项,之后再算梯度,最后反向传播,而Adamw直接将正则项的梯度加入反向传播的公式中,省去了手动在loss中加正则项这一步。
2023-10-07 11:25:51
36
原创 损失函数-基本
用方差容易出现多个局部最优解(即非凸函数),这样很难找到全局最优训练出好的模型,这样很依赖初始权值的起点。反之,用交叉熵就很容易找到全局最优,因为是代价函数是大部分情况是凸函数。
2023-10-07 10:52:39
11
原创 EM算法
然后计算得到每个样本最近的质心,并把样本聚类到最近的这个质心,即 EM 算法的 M 步。EM 算法可以保证收敛到一个稳定点,但是却不能保证收敛到全局的极大值点,因此它是局部最优的算法,当然,如果我们的优化目标是凸的,则EM算法可以保证收敛到全局极大值,这点和梯度下降法这样的迭代算法相同。:利用E步骤中计算出的期望值,优化模型参数以最大化完整数据的似然函数(包括观察到的数据和E步骤中估算的缺失数据)。这两个步骤反复进行,直到模型的参数收敛(即参数的改变小于某个预定阈值)或达到预定的迭代次数。
2023-10-07 10:33:45
43
原创 海量数据处理
1000个瓶子编号1-1000, 每个编号会有一个10位的二进制数字。10只老鼠,依次喝掉所有二进制第一位是1的瓶子,第二位是1的瓶子。一周之后,死掉的老鼠说明毒药瓶子编号在对应二进制位置是1,否则是0。可以组合出毒药的编号。(这里补充介绍:BFPRT算法,也被称为中位数的中位数算法,是一个选取无序列表第k小元素的算法。方案二:大小为5000万的优先队列,内存要5千万,还是不够小。重复步骤 2 和 3,直到找到第 5千万大的数。方案一:快排,内存要一亿,还不够小。这类博客写的有的有问题,注意辨别。
2023-09-28 09:46:04
184
原创 cannot import name ‘container_abcs’ from ‘torch._six’
因为1.8版本之后container_abcs就已经被移除了。
2023-09-26 18:37:57
44
原创 AUC(Area Under Curve)
AUC有两种,ROC-AUC, PR-AUCROC由TPR, FPR画出PR由P和R画出注意 TPR==R。
2023-09-20 21:06:48
72
原创 差分数组leetcode 2770 数组的最大美丽值
差分数组是一种数据结构,它存储的是一个数组每个相邻元素的差值。换句话说,给定一个数组arr[],其对应的差分数组diff[]
2023-09-16 20:32:11
154
原创 TypeError: default_collate: batch must contain tensors, numpy arrays, numbers, dicts or lists; found
(已解决)在多进程加载数据时遇到这个问题:将。这通常意味数据集(通常是一个继承自。原因:DataLoader中出现了。的类)在某个时候返回了。
2023-09-14 15:59:18
289
原创 module ‘labmodule ‘labelme.utils‘ has no attribute ‘labeelme.utils‘ has no attribute ‘label_colormap
原因:labelme的版本太新了,这是旧版本3.16.7的attribute。
2023-09-12 10:24:25
27
原创 torch-sparse:which is required to install pyproject.toml.based projects
看一下错误,这个包有依赖C++,如果有visual studio的报错,就先去下一个visual studio。这个错误看似成功下载了wheel,依赖环境导致的错误。实质是包之间不匹配。2. 下载对应版本的wheel 本地pip install。1. 确定torch版本。
2023-07-13 17:00:56
1072
1
原创 UnicodeDecodeError ‘utf-8’ code cant decode byte 0xff
可以尝试使用 'latin1'、'iso-8859-1' 或 'cp1252'
2023-07-11 11:21:05
101
原创 二叉树概念(二)
在 Python 中,没有内置的库可以用来模拟平衡二叉树。为了解决这个问题提出了红黑树,自然我们会问,如果只是追求平衡,那用平衡二叉树AVL就可以了,那AVL和红黑树的异同是什么?二叉搜索树的平均查找时间复杂度是O(logN), 然而在下面这种情况中(不平衡二叉搜索树)会恶化到O(N)同:红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(log2N )叶节点只能出现在最下层和次下层,并且最下面一层的结点都集中在该层最左边的若干位置。小根堆:一棵完全二叉树,满足任一节点都比其他孩子节点小。
2023-06-10 23:38:53
582
原创 锁机制:互斥,自旋,读写,RCU
写者要从链表中删除元素 B,它首先遍历该链表得到指向元素 B 的指针,然后修改元素 B 的前一个元素的 next 指针指向元素 B 的 next 指针指向的元素C,修改元素 B 的 next 指针指向的元素 C 的 prep 指针指向元素 B 的 prep指针指向的元素 A,在这期间可能有读者访问该链表,修改指针指向的操作是原子的,所以不需要同步,而元素 B 的指针并没有去修改,因为读者可能正在使用 B 元素来得到下一个或前一个元素。如果解锁时有一个以上的线程阻塞,那么所有该锁上的线程都被编程就绪状态,
2023-06-04 16:45:24
291
原创 TCP三次握手,四次挥手
客户端发,服务收到后发,两方即可建立连接存在的问题:这个过程确认了客户端发送能力正常,服务端发送,接受能力正常,但是没能确认客户端的接收能力是否正常三次握手目的一(有争议):防止已失效的连接请求又传送到服务器端,因而产生错误若建立连接只需两次握手,客户端并没有太大的变化,仍然需要获得服务端的应答后才进入ESTABLISHED状态,而服务端在收到连接请求后就进入ESTABLISHED状态。
2023-05-09 14:31:13
537
coco数据集转yolo格式,自己转的(和yolov1.0提供的不太一样)
2023-04-28
ISBI 2015 数据集(下)
2022-05-25
ISBI 2015 数据集(上)
2022-05-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人