Codeforces892C Pride

版权声明:欢迎大家指正错误,有不同观点的欢迎评论,共同进步 https://blog.csdn.net/Sirius_han/article/details/79949841

You have an array a with length n, you can perform operations. Each operation is like this: choose two adjacent elements from a, say x and y, and replace one of them with gcd(x, y), where gcd denotes the greatest common divisor.

What is the minimum number of operations you need to make all of the elements equal to 1?


Input

The first line of the input contains one integer n (1 ≤ n ≤ 2000) — the number of elements in the array.

The second line contains n space separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the array.

Output

Print -1, if it is impossible to turn all numbers to 1. Otherwise, print the minimum number of operations needed to make all numbers equal to 1.

Examples
Input
5
2 2 3 4 6
Output
5
Input
4
2 4 6 8
Output
-1
Input
3
2 6 9
Output
4
Note

In the first sample you can turn all numbers to 1 using the following 5 moves:

  • [2, 2, 3, 4, 6].
  • [2, 1, 3, 4, 6]
  • [2, 1, 3, 1, 6]
  • [2, 1, 1, 1, 6]
  • [1, 1, 1, 1, 6]
  • [1, 1, 1, 1, 1]

We can prove that in this case it is not possible to make all numbers one using less than 5 moves.


题意:一个数列, 相邻两个数求gcd, 然后用gcd代替其中一个数, 问操作几次可使得所有数都变为1, 若不能输出-1;

#include <iostream>
#include <algorithm>
using namespace std;
long long gcd(long long a, long long b){
	return b==0?a:gcd(b, a%b);
}
long long g[2005][2004];
const long long maxn=1e9+5;
int main(){
	int n, num=0;
	cin >> n;
	for(int i=1; i<=n; i++){
		cin >> g[0][i];
		if(g[0][i]==1) num++;
	}
	if(num>0){
		cout << n-num << endl;
		return 0;
	}
	int ans=maxn;
	for(int i=1; i<=n; i++){
		for(int j=1; j<n-i+1; j++){
			g[i][j]=gcd(g[i-1][j], g[i-1][j+1]);
			if(g[i][j]==1){
				ans=min(ans, i);
			}
		}
	}
	if(ans==maxn) cout << -1 <<endl;
	else cout << n+ans-1 << endl;	
	return 0;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页