Pride

You have an array a with length n, you can perform operations. Each operation is like this: choose two adjacent elements from a, say x and y, and replace one of them with gcd(x, y), where gcd denotes the greatest common divisor.

What is the minimum number of operations you need to make all of the elements equal to 1?


Input

The first line of the input contains one integer n (1 ≤ n ≤ 2000) — the number of elements in the array.

The second line contains n space separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the array.

Output

Print -1, if it is impossible to turn all numbers to 1. Otherwise, print the minimum number of operations needed to make all numbers equal to 1.

Examples
Input
5
2 2 3 4 6
Output
5
Input
4
2 4 6 8
Output
-1
Input
3
2 6 9
Output
4
Note

In the first sample you can turn all numbers to 1 using the following 5 moves:

  • [2, 2, 3, 4, 6].
  • [2, 1, 3, 4, 6]
  • [2, 1, 3, 1, 6]
  • [2, 1, 1, 1, 6]
  • [1, 1, 1, 1, 6]
  • [1, 1, 1, 1, 1]

We can prove that in this case it is not possible to make all numbers one using less than 5 moves.

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 2005;
int arr[N];
int gcd(int a,int b){
	return b==0?a:gcd(b,a%b);
}
int main(){
	int n;
	cin>>n;
	int cnt=0;
	for(int i=0;i<n;i++){
		cin>>arr[i];
		if(arr[i]==1) cnt++;
	}
	if(cnt){
		cout<<n-cnt<<endl;
	    return 0;
	}
	int mint=N;
	for(int i=0;i<n;i++){
		int x=arr[i];
		int ans=0;
		for(int j=i+1;j<n;j++){
		    ans++;
			x=gcd(x,arr[j]);
			if(x==1) break;
		}
		if(x==1) mint=min(mint,ans);
	}
	if(mint==N) cout<<"-1"<<endl;
	else cout<<n+mint-1<<endl;
	return 0;
}



阅读更多
版权声明:欢迎评论,本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/islittlehappy/article/details/79951709
个人分类: 找规律
想对作者说点什么? 我来说一句

Pride and Prejudice .pdf

2012年02月17日 1.08MB 下载

没有更多推荐了,返回首页

不良信息举报

Pride

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭