斐波那契的优化

普通递归实现:

def fib(N):
    if N == 0:
        return 1
    if N == 1:
        return 1
    if N > 1:
        return fib(N-1) + fib(N-2)
    
import time
t1 = time.time()
print(fib(40))
t2 = time.time()
print(t2-t1)

#运行结果为
165580141
53.53498697280884

 

上方时间花费在求重复的值上,例如fib(40)=fib(39)+fib(38),fib(39)=fib(38)+fib(37)这里fib(38)就会被求两次,fib(37),fib(36)...也是。

如果在这儿加入缓存,将每次求出来的结果保存到数组,就会节省大部分时间。实现如下。

缓存机制求斐波那契:

def fib(N):
    if N == 0:
        return 1
    if N == 1:
        return 1
    arr = [1 for i in range(N+1)]
    for i in range(2, N+1):
        arr[i] = arr[i-1] + arr[i-2]
    return arr[N]

import time
t1 = time.time()
print(fib(40))
t2 = time.time()
print(t2-t1)


#运行结果:
165580141
0.00018906593322753906
    

由图可知,时间从53秒优化到8毫秒。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值