Mixed-Integer Program问题总结

本文深入解析混合整数规划(MIP),介绍其概念、与整数规划的区别,列举MILP实例,并探讨常见求解器如Lingo、COPT、CPLEX和SCIP。还提及DeepMind如何利用神经网络解决MIP问题并超越传统工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 MIP是什么

混合整数规划 (MIP) 问题可同时包含整数和连续变量。 如果该问题包含不带二次项的目标函数(线性目标),那么称为混合整数线性规划 (MILP)。

整数规划相对混合整数规划相对简单,整数规划不含连续变量,其中一种常见特例就是0-1整数规划问题,0-1整数规划(中的涉及到的变量只能为0或1。而任何有界整数变量都可以表示为二进制变量的组合。例如整数{\displaystyle 0\leq x\leq U}可以用{\displaystyle \lfloor \log _{2}U\rfloor +1}个二值变量表示,因此整数规划都可以等价为0-1整数规划。

MIP问题实例:

minimize (x + y) \\ subject\,to\\2 x + 3y \leq 10\\ x \leq 5\\ and\,x \in Z

常见MIP求解器

Lingo:由美国LINDO系统公司(Lindo System Inc.)推出的,可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等

COPT:COPT(Cardinal Optimizer)是杉数自主研发的针对大规模优化问题的高效数学规划求解器套件

CPLEX: IBM公司的商业软件,为线性规划、混合整数规划、二次规划和二次约束编程问题提供灵活的高性能数学规划求解器

SCIP:开源混合整数规划(MILP)框架,支持自定义搜索树中的各个模块

Deepmind:”Use Neural Networks to Solve Mixed Integer Programs“,论文中号称超越了SCIP7.0.1

### 非线性优化与混合整数非线性规划算法技术 #### 定义与背景 非线性优化涉及最小化或最大化一个目标函数,该函数可以是非线性的,并受制于可能同样为非线性的一组约束条件。当决策变量中部分或全部被限定为离散值时,则称为混合整数非线性规划(MINLP)[^2]。 #### 基本方法和技术 对于无约束凸极小化问题,在某些特殊情况下可以通过解析求解最优性方程 \(∇f(x) = 0\) 来找到解决方案;然而通常这类问题需借助迭代算法解决,比如牛顿法、梯度下降法以及最陡下降法等[^3]。 针对MINLP问题,常用的方法包括但不限于: - **分支定界法**:这是一种用于求解组合优化问题的有效策略,通过系统地分割可行域并评估子区域来逐步逼近全局最优解。 - **外点惩罚函数法**:此方法将原问题转化为一系列连续可微分的辅助问题序列,从而允许应用标准数值优化程序处理带有不等式约束的情况。 - **内点法**:这种方法旨在保持当前估计始终位于定义区域内侧附近移动,直到达到满足精度要求的最佳位置为止。 #### 实现工具与资源 存在多种实现上述各类非线性编程算法的方式,例如MATLAB提供了丰富的内置功能支持复杂模型构建及高效计算过程管理。开源项目`Nonlinear-Optimization-Algorithms`也包含了若干经典算法的具体代码实例可供学习参考[^1]。 ```matlab % 使用Matlab中的fmincon函数作为例子展示如何设置带约束条件下寻找局部最优解的过程 options = optimoptions('fmincon','Algorithm','interior-point'); [x,fval] = fmincon(@objectiveFunction,x0,A,b,Aeq,beq,lb,ub,@nonlcon,options); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值