自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 多任务学习中的每个loss如何平衡?

✅ 本期介绍一种适合“说给面试官听的”多任务调节方法,具体方法如图所示。除此之外,还有一些其他可行的方案,感兴趣的同学可以自行查阅相关资料~模型的 整体损失函数 一般由各子目标损失函数 加权求和得到。因此,合理地调节各个子目标的权重 ,对于提升 整体效果 具有重要意义。在推荐系统中,通常需要 多目标模型 来同时对 多个目标 进行建模,常见目标如点击率(CTR)、转化率(CVR)、视频播放时长等。》中包含许多校招算法岗面试题以及题解,有需求的同学可以点击链接购买,实现准备效率翻倍。

2025-07-13 16:16:05 270

原创 在逻辑回归模型中,有 2 列特征的值完全相同,结束训练后这 2 列特征对应的权重相等么?

2. 如果这两列特征对应 权重初始化不同,那模型训练结束后 权重就是不同 的,但权重的 差值保持不变。# 2. 生成标签:使用真权重 [2,2] 和偏置 -0.5 做 logits,再加噪声。# 3. 梯度下降训练(初始化 w=[0,0]、b=1,学习率 0.1)权重初始化相同。# 4. 梯度下降训练(初始化 w=[0,1]、b=1,学习率 0.1)权重初始化不同。1. 如果这两列特征对应 权重初始化相同,那模型训练结束后 权重就是相同 的。结果也证明了我们前面分析得到的结论,即 “若两列特征对应。

2025-06-26 16:15:00 329

原创 Transformer的注意力机制除以根号d的原因详解

很靠近0或1,会让梯度值变得很小,进而出现梯度消失问题。因此,为了使得结果稳定,需要让。是均值为 0、方差为 1 的独立随机变量,那么根据方差的性质,在注意力机制中,注意力分数的计算是通过 Query 矩阵。的值会变得很靠近0或1,容易出现梯度消失问题。的增大而增大,这会导致注意力分数矩阵。这里介绍为什么会出现梯度消失问题,记。维的向量),那么注意力分数矩阵。中的元素值变得很大,那。

2025-06-07 10:11:30 1830

原创 推荐系统中的AUC计算方式详解

为指示函数(正样本预测值大于负样本时为 1,否则为 0)。实际在计算时,如果正样本预测值等于负样本时,值为0.5。对于桶内的正序对,分桶法近似计算为桶内正负样本对数的一半,即。:将预测值分桶,统计每个桶内的正负样本数,近似计算 AUC。遍历所有正负样本对,统计正样本预测值高于负样本的次数。通过排序预测值,利用正样本的排名和计算 AUC。个正样本,假设和该正样本组成正序对的数量为。:将所有样本按预测值从低到高排序。)的负样本构成正序对的数量为。个正样本,与所有之后的桶(为模型对样本的预测分数。

2025-05-28 16:00:05 1578

原创 模型参数全初始化为相同的值,会出现什么问题?

✅ 作者根据近百场搜广推面试总结了《大厂搜广推算法高频考题》面试笔记,多位算法工程师核准答案,题解超详细!有需求的同学们可以点击下方链接购买,祝大家算法岗面试效率翻倍!大厂搜广推算法高频考题。

2025-05-26 14:31:00 1556

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除