【leetcode】使结果不超过阈值的最小除数 (二分枚举)

给你一个整数数组 nums 和一个正整数 threshold ,你需要选择一个正整数作为除数,然后将数组里每个数都除以它,并对除法结果求和。

请你找出能够使上述结果小于等于阈值 threshold 的除数中 最小 的那个。

每个数除以除数后都向上取整,比方说 7/3 = 3 , 10/2 = 5 。

题目保证一定有解。

示例 1:

输入:nums = [1,2,5,9], threshold = 6
输出:5
解释:如果除数为 1 ,我们可以得到和为 17 (1+2+5+9)。
如果除数为 4 ,我们可以得到和为 7 (1+1+2+3) 。如果除数为 5 ,和为 5 (1+1+1+2)。
示例 2:

输入:nums = [2,3,5,7,11], threshold = 11
输出:3
示例 3:

输入:nums = [19], threshold = 5
输出:4

提示:

1 <= nums.length <= 5 * 10^4
1 <= nums[i] <= 10^6
nums.length <= threshold <= 10^6

链接:https://leetcode-cn.com/problems/find-the-smallest-divisor-given-a-threshold

思路分析:

题意就是找最小的除数x,使得∑(nums[i]/x) (向上取整) <= threshold.
为什么会想到二分枚举呢?
首先,我会考虑暴力做法,但这种数据范围暴力肯定TLE. 然后,我们观察一下每个除数经过运算后的结果(假设除数为x, cal(x)为运算结果).
我们可以发现,x = 1时,cal(x)是最大的,越往后,cal(x)越小,直到x >= 数组中的最大值时,cal(x)就是1+1+1…

因此,y = cal(x) 是一个有序序列,可以想到二分枚举。并且我们要求最小除数,也就是转化为求二分区间的左边界。

对于二分枚举,我们需要一个条件来缩短区间。这个条件就是cal(x)和threshold的关系。

  1. cal(mid) > threshold 表明mid取小了,令 l = mid+1 区间向右压缩。
  2. cal(mid) <= threshold 表明mid取大了,令 r = mid 区间向左压缩直至左边界。
class Solution {
public:
    int cal(vector<int> nums, int x)
    {
        int res = 0;
        for(int i = 0;i < nums.size();i++)
        {
            int t = nums[i]/x;	
            if(nums[i]%x != 0) t++;	//无法整除,向上取整
            res += t;
        }
        return res;
    }
    
    int smallestDivisor(vector<int>& nums, int threshold) {
        int l = 1, r = 1000000;
        while(l < r)
        {
            int mid = l+r>>1;
            if(cal(nums,mid) > threshold)
            {
                l = mid+1;
            }
            else r = mid;
        }
        return l;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值