偶然遇到了图着色问题,之前也没写过,这里写一下。
示例输入采用的是《离散数学》左孝凌版的图7-6.3,如下图所示:
输入第一行分别为n、s,n表示结点的个数,s表示边数,然后s行表示了s条边,这里的边为了与离散数学书上的图对应起来,下标从1开始。代码采用书上的Welch Powell方法来对每个点进行着色,每次选取最大度数且与之不邻接的边进行着色。
输入:
8 17
1 2
1 3
1 4
1 7
2 3
2 4
2 5
3 5
3 6
3 7
4 5
4 7
5 6
5 7
5 8
6 8
7 8
输出:
总共需要用3种颜色,各个结点的着色如下
1:1
2:3
3:2
4:2
5:1
6:3
7:3
8:2
代码如下:
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
struct node
{
int index, degree = 0;
};
bool cmp(node n1, node n2)
{
if (n1.degree != n2.degree)
return n1.degree > n2.degree;
return n1.index < n2.index;
}
int main()
{
int n, s, u, v; // n个结点,s条边
cin >> n >> s;
vector<node> deg(n + 1);
for (int i = 1; i <= n; i++)
deg[i].index = i;
vector<vector<int>> edge(n + 1, vector<int>(n + 1));
for (int i = 0; i < s; i++)
{
cin >> u >> v;
edge[u][v] = edge[v][u] = 1;
++deg[u].degree;
++deg[v].degree;
}
vector<bool> visit(n + 1);
vector<int> colors(n + 1);
int color = 1; // 此处颜色用数字来表示,同种数字表示同一种颜色
sort(deg.begin() + 1, deg.end(), cmp);
for (int i = 1; i <= n; i++)
{
int cur = deg[i].index; // 当前度最大结点
if (visit[cur])
continue;
visit[cur] = true;
colors[cur] = color;
for (int j = 1; j <= n; ++j)
{
if (j != cur && edge[cur][j] == 0) // 两点不邻接
{
colors[j] = color;
visit[j] = true;
}
}
++color; // 下一个颜色
}
cout << "总共需要用" << color - 1 << "种颜色,各个结点的着色如下" << endl;
for (int i = 1; i <= n; i++)
cout << i << ":" << colors[i] << endl;
return 0;
}
如有错误,欢迎指正